On features of hyperonic interactions in neutron stars

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Interplay between properties of hyperonic interactions and neutron star observables is studied with Skyrme NN, ΛN, and ΛΛ potentials. It is shown that the ΛN potentials with different density dependencies, which describe Λ hypernuclear spectra equally well, lead to substantially different dependence of neutron star mass on its radius. The role of the nucleon density dependence of ΛΛ potential is considered within the Skyrme formalism at the first time. It is shown that this dependence influences the calculated masses and radii weaker.

About the authors

S. A Mikheev

Lomonosov Moscow State University, Faculty of Physics; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: mikheev.sa16@physics.msu.ru
Moscow, Russia; Moscow, Russia

D. E Lanskoy

Lomonosov Moscow State University, Faculty of Physics

Moscow, Russia

A. I Nasakin

Lomonosov Moscow State University, Faculty of Physics; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Moscow, Russia; Moscow, Russia

T. Yu Tretyakova

Lomonosov Moscow State University, Faculty of Physics; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Moscow, Russia; Moscow, Russia

References

  1. Takahashi H., Ahn J.K., Akikawa H. et al. // Phys. Rev. Lett. 2001. V. 87. Art. No. 212502.
  2. Cromartie H.T., Fonseca E., Ransom S.M. et al. // Nature Astron. 2019. V. 4. P. 72.
  3. Fonseca E., Cromartie H.T., Pennucci T.T. et al. // Astrophys. J. Lett. 2021. V. 915. Art. No. L12.
  4. Romani R.W., Kandel D., Filippenko A.V. et al. // Astrophys. J. Lett. 2022. V. 934. Art. No. L17.
  5. Vidana I. // EPJ Web Conf. 2022. V. 271. Art. No. 09001.
  6. Dutra M., Lourenco O., Martins S. // Phys. Rev. C. 2012. V. 85. Art. No. 035201.
  7. Rikovska Stone J., Miller J.C., Koncewicz R. et al. // Phys. Rev. C. 2003. V. 68. Art. No. 034324.
  8. Rayet M. // Nucl. Phys. A. 1981. V. 367. P. 381.
  9. Mornas L. // Eur. Phys. J. A. 2005. V. 24. P. 293.
  10. Lanskoy D.E. // Phys. Rev. C. 1998. V. 58. P. 3351.
  11. Minato F., Chiba S. // Nucl. Phys. A. 2011. V. 856. P. 55.
  12. Lanskoy D.E., Yamamoto Y. // Phys. Rev. C. 1997. V. 55. P. 2330.
  13. Yamamoto Y., Motoba T., Rijken T.A. // Progr. Theor. Phys. Suppl. 2010. V. 185. P. 72.
  14. Schulze H.-J., Hiyama E. // Phys. Rev. C. 2014. V. 90. Art. No. 047301.
  15. Yamamoto Y., Bando H., Zofka J. // Prog. Theor. Phys. 1988. V. 80. P. 757.
  16. Fernandez F., Lopez Arias T., Prieto C. // Z. Phys. A. 1989. V. 334. P. 349.
  17. Reinhard P.-G., Flocard H. // Nucl. Phys. A. 1995. V. 584. P. 467.
  18. Chabanat E., Bonche P., Haensel P. et al. // Nucl. Phys. A. 1997. V. 627. P. 710.
  19. Shen S., Colò G., Roca-Maza X. // Phys. Rev. C. 2019. V. 99. Art. No. 034322.
  20. Glendenning N.K. // Astrophys. J. 1985. V. 293. P. 470.
  21. Tolman R.C. // Phys. Rev. 1939. V. 55. P. 364.
  22. Oppenheimer J.R., Volkoff G.M. // Phys. Rev. 1939. V. 55. P. 374.
  23. Baym G., Pethick C., Sutherland P. // Astrophys. J. 1971. V. 170. P. 299.
  24. Mikheev S., Lanskoy D., Nasakin A., Tretyakova T. // Particles. 2023. V. 6. P. 847.
  25. Насакин А.И., Ланской Д.Е., Михеев С.А., Третьякова Т.Ю. // ЭЧАЯ. 2025. Т. 56.№3. С. 1583.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences