On features of hyperonic interactions in neutron stars

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Interplay between properties of hyperonic interactions and neutron star observables is studied with Skyrme NN, ΛN, and ΛΛ potentials. It is shown that the ΛN potentials with different density dependencies, which describe Λ hypernuclear spectra equally well, lead to substantially different dependence of neutron star mass on its radius. The role of the nucleon density dependence of ΛΛ potential is considered within the Skyrme formalism at the first time. It is shown that this dependence influences the calculated masses and radii weaker.

Sobre autores

S. Mikheev

Lomonosov Moscow State University, Faculty of Physics; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: mikheev.sa16@physics.msu.ru
Moscow, Russia; Moscow, Russia

D. Lanskoy

Lomonosov Moscow State University, Faculty of Physics

Moscow, Russia

A. Nasakin

Lomonosov Moscow State University, Faculty of Physics; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Moscow, Russia; Moscow, Russia

T. Tretyakova

Lomonosov Moscow State University, Faculty of Physics; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Moscow, Russia; Moscow, Russia

Bibliografia

  1. Takahashi H., Ahn J.K., Akikawa H. et al. // Phys. Rev. Lett. 2001. V. 87. Art. No. 212502.
  2. Cromartie H.T., Fonseca E., Ransom S.M. et al. // Nature Astron. 2019. V. 4. P. 72.
  3. Fonseca E., Cromartie H.T., Pennucci T.T. et al. // Astrophys. J. Lett. 2021. V. 915. Art. No. L12.
  4. Romani R.W., Kandel D., Filippenko A.V. et al. // Astrophys. J. Lett. 2022. V. 934. Art. No. L17.
  5. Vidana I. // EPJ Web Conf. 2022. V. 271. Art. No. 09001.
  6. Dutra M., Lourenco O., Martins S. // Phys. Rev. C. 2012. V. 85. Art. No. 035201.
  7. Rikovska Stone J., Miller J.C., Koncewicz R. et al. // Phys. Rev. C. 2003. V. 68. Art. No. 034324.
  8. Rayet M. // Nucl. Phys. A. 1981. V. 367. P. 381.
  9. Mornas L. // Eur. Phys. J. A. 2005. V. 24. P. 293.
  10. Lanskoy D.E. // Phys. Rev. C. 1998. V. 58. P. 3351.
  11. Minato F., Chiba S. // Nucl. Phys. A. 2011. V. 856. P. 55.
  12. Lanskoy D.E., Yamamoto Y. // Phys. Rev. C. 1997. V. 55. P. 2330.
  13. Yamamoto Y., Motoba T., Rijken T.A. // Progr. Theor. Phys. Suppl. 2010. V. 185. P. 72.
  14. Schulze H.-J., Hiyama E. // Phys. Rev. C. 2014. V. 90. Art. No. 047301.
  15. Yamamoto Y., Bando H., Zofka J. // Prog. Theor. Phys. 1988. V. 80. P. 757.
  16. Fernandez F., Lopez Arias T., Prieto C. // Z. Phys. A. 1989. V. 334. P. 349.
  17. Reinhard P.-G., Flocard H. // Nucl. Phys. A. 1995. V. 584. P. 467.
  18. Chabanat E., Bonche P., Haensel P. et al. // Nucl. Phys. A. 1997. V. 627. P. 710.
  19. Shen S., Colò G., Roca-Maza X. // Phys. Rev. C. 2019. V. 99. Art. No. 034322.
  20. Glendenning N.K. // Astrophys. J. 1985. V. 293. P. 470.
  21. Tolman R.C. // Phys. Rev. 1939. V. 55. P. 364.
  22. Oppenheimer J.R., Volkoff G.M. // Phys. Rev. 1939. V. 55. P. 374.
  23. Baym G., Pethick C., Sutherland P. // Astrophys. J. 1971. V. 170. P. 299.
  24. Mikheev S., Lanskoy D., Nasakin A., Tretyakova T. // Particles. 2023. V. 6. P. 847.
  25. Насакин А.И., Ланской Д.Е., Михеев С.А., Третьякова Т.Ю. // ЭЧАЯ. 2025. Т. 56.№3. С. 1583.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025