On features of hyperonic interactions in neutron stars
- Authors: Mikheev S.A1,2, Lanskoy D.E1, Nasakin A.I1,2, Tretyakova T.Y.1,2
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Physics
- Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics
- Issue: Vol 89, No 5 (2025)
- Pages: 826-831
- Section: Physics of Auroral Phenomena
- URL: https://jdigitaldiagnostics.com/0367-6765/article/view/691665
- DOI: https://doi.org/10.31857/S0367676525050227
- ID: 691665
Cite item
Abstract
Interplay between properties of hyperonic interactions and neutron star observables is studied with Skyrme NN, ΛN, and ΛΛ potentials. It is shown that the ΛN potentials with different density dependencies, which describe Λ hypernuclear spectra equally well, lead to substantially different dependence of neutron star mass on its radius. The role of the nucleon density dependence of ΛΛ potential is considered within the Skyrme formalism at the first time. It is shown that this dependence influences the calculated masses and radii weaker.
Keywords
About the authors
S. A Mikheev
Lomonosov Moscow State University, Faculty of Physics; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics
Email: mikheev.sa16@physics.msu.ru
Moscow, Russia; Moscow, Russia
D. E Lanskoy
Lomonosov Moscow State University, Faculty of PhysicsMoscow, Russia
A. I Nasakin
Lomonosov Moscow State University, Faculty of Physics; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear PhysicsMoscow, Russia; Moscow, Russia
T. Yu Tretyakova
Lomonosov Moscow State University, Faculty of Physics; Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear PhysicsMoscow, Russia; Moscow, Russia
References
- Takahashi H., Ahn J.K., Akikawa H. et al. // Phys. Rev. Lett. 2001. V. 87. Art. No. 212502.
- Cromartie H.T., Fonseca E., Ransom S.M. et al. // Nature Astron. 2019. V. 4. P. 72.
- Fonseca E., Cromartie H.T., Pennucci T.T. et al. // Astrophys. J. Lett. 2021. V. 915. Art. No. L12.
- Romani R.W., Kandel D., Filippenko A.V. et al. // Astrophys. J. Lett. 2022. V. 934. Art. No. L17.
- Vidana I. // EPJ Web Conf. 2022. V. 271. Art. No. 09001.
- Dutra M., Lourenco O., Martins S. // Phys. Rev. C. 2012. V. 85. Art. No. 035201.
- Rikovska Stone J., Miller J.C., Koncewicz R. et al. // Phys. Rev. C. 2003. V. 68. Art. No. 034324.
- Rayet M. // Nucl. Phys. A. 1981. V. 367. P. 381.
- Mornas L. // Eur. Phys. J. A. 2005. V. 24. P. 293.
- Lanskoy D.E. // Phys. Rev. C. 1998. V. 58. P. 3351.
- Minato F., Chiba S. // Nucl. Phys. A. 2011. V. 856. P. 55.
- Lanskoy D.E., Yamamoto Y. // Phys. Rev. C. 1997. V. 55. P. 2330.
- Yamamoto Y., Motoba T., Rijken T.A. // Progr. Theor. Phys. Suppl. 2010. V. 185. P. 72.
- Schulze H.-J., Hiyama E. // Phys. Rev. C. 2014. V. 90. Art. No. 047301.
- Yamamoto Y., Bando H., Zofka J. // Prog. Theor. Phys. 1988. V. 80. P. 757.
- Fernandez F., Lopez Arias T., Prieto C. // Z. Phys. A. 1989. V. 334. P. 349.
- Reinhard P.-G., Flocard H. // Nucl. Phys. A. 1995. V. 584. P. 467.
- Chabanat E., Bonche P., Haensel P. et al. // Nucl. Phys. A. 1997. V. 627. P. 710.
- Shen S., Colò G., Roca-Maza X. // Phys. Rev. C. 2019. V. 99. Art. No. 034322.
- Glendenning N.K. // Astrophys. J. 1985. V. 293. P. 470.
- Tolman R.C. // Phys. Rev. 1939. V. 55. P. 364.
- Oppenheimer J.R., Volkoff G.M. // Phys. Rev. 1939. V. 55. P. 374.
- Baym G., Pethick C., Sutherland P. // Astrophys. J. 1971. V. 170. P. 299.
- Mikheev S., Lanskoy D., Nasakin A., Tretyakova T. // Particles. 2023. V. 6. P. 847.
- Насакин А.И., Ланской Д.Е., Михеев С.А., Третьякова Т.Ю. // ЭЧАЯ. 2025. Т. 56.№3. С. 1583.
Supplementary files
