Production and electronic transport in thin films of strontium iridate

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of the study of epitaxial thin films of SrIrO3 are presented, data on growth technology, crystal structure and electronic transport are presented. In SrIrO3 films received in a mixture of Ar and O2 gases, the dependence of resistance on temperature has a metallic character. For the films deposited in pure argon, the resistance versus temperature curves shows both a metallic and a dielectric behavior. It depends on the deposition pressure and the deposition temperature. The activation energy was calculated for dielectric samples and compared with the activation energy for Sr2IrO4 films.

Авторлар туралы

I. Moskal

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Хат алмасуға жауапты Автор.
Email: ivan.moscal@yandex.ru
Ресей, Moscow, 125009; Dolgoprudny, 141701

A. Petrzhik

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Ресей, Moscow, 125009

Yu. Kislinskii

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Ресей, Moscow, 125009

A. Shadrin

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: ivan.moscal@yandex.ru
Ресей, Moscow, 125009; Dolgoprudny, 141701

G. Ovsyannikov

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Ресей, Moscow, 125009

N. Dubitskiy

Russian Technological University – MIREA

Email: ivan.moscal@yandex.ru
Ресей, Moscow, 119454

Әдебиет тізімі

  1. Petrzhik A.M., Constantinian K.Y., Ovsyannikov G.A. et al. // Phys. Rev. B. 2019. V. 100. Art. No. 024501.
  2. Petrzhik A.M., Constantinian K.Y., Ovsyannikov G.A. et al. // J. Surf. Invest. X-Ray Synchrotron Neutron Techn. 2020. V. 14. No. 3. P. 547.
  3. Ovsyannikov G.A., Constantinian K.Y., Shmakov V.A. et al. // Phys. Rev. B. 2023. V. 107. Art. No. 144419.
  4. Kazunori Nishio, Harold Y. Hwang // APL Materials. 2016. V. 4. Art. No. 036102.
  5. Gutierrez-Llorente A., Iglesias L., Rodr’iguez-Gonz’alez B., Rivadulla F. // APL Materials. 2018. V. 6. Art. No. 091101.
  6. Fuentes V., Vasic B., Konstantinovic Z. et al. // J. Magn. Magn. Mater. 2020. V. 501. Art. No. 166419.
  7. Петржик А.М., Cristiani G., Логвенов Г. и др. // Письма в ЖТФ. 2017. Т. 43. № 12. С. 25; Petrzhik A.M., Cristiani G., Logvenov G. et al. // Tech. Phys. Lett. 2017. V. 43. No. 6. P. 554.
  8. Biswas A., Jeong Y.H. // Current Appl. Phys. 2017. V. 17. P. 605.
  9. Кислинский Ю.В., Овсянников Г.А., Петржик А.М. и др. // ФТТ. 2015. Т. 57. № 12. С. 2446; Kislinskii Yu.V., Ovsyannikov G.A., Petrzhik A.M. et al. // Phys. Solid State. 2015. V. 57. No. 12. P. 2519.
  10. Gao G., Schlottmann P. // Rep. Prog. Phys. 2018. V. 81. Art. No. 042502.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024