Production and electronic transport in thin films of strontium iridate

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of the study of epitaxial thin films of SrIrO3 are presented, data on growth technology, crystal structure and electronic transport are presented. In SrIrO3 films received in a mixture of Ar and O2 gases, the dependence of resistance on temperature has a metallic character. For the films deposited in pure argon, the resistance versus temperature curves shows both a metallic and a dielectric behavior. It depends on the deposition pressure and the deposition temperature. The activation energy was calculated for dielectric samples and compared with the activation energy for Sr2IrO4 films.

作者简介

I. Moskal

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

编辑信件的主要联系方式.
Email: ivan.moscal@yandex.ru
俄罗斯联邦, Moscow, 125009; Dolgoprudny, 141701

A. Petrzhik

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
俄罗斯联邦, Moscow, 125009

Yu. Kislinskii

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
俄罗斯联邦, Moscow, 125009

A. Shadrin

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: ivan.moscal@yandex.ru
俄罗斯联邦, Moscow, 125009; Dolgoprudny, 141701

G. Ovsyannikov

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
俄罗斯联邦, Moscow, 125009

N. Dubitskiy

Russian Technological University – MIREA

Email: ivan.moscal@yandex.ru
俄罗斯联邦, Moscow, 119454

参考

  1. Petrzhik A.M., Constantinian K.Y., Ovsyannikov G.A. et al. // Phys. Rev. B. 2019. V. 100. Art. No. 024501.
  2. Petrzhik A.M., Constantinian K.Y., Ovsyannikov G.A. et al. // J. Surf. Invest. X-Ray Synchrotron Neutron Techn. 2020. V. 14. No. 3. P. 547.
  3. Ovsyannikov G.A., Constantinian K.Y., Shmakov V.A. et al. // Phys. Rev. B. 2023. V. 107. Art. No. 144419.
  4. Kazunori Nishio, Harold Y. Hwang // APL Materials. 2016. V. 4. Art. No. 036102.
  5. Gutierrez-Llorente A., Iglesias L., Rodr’iguez-Gonz’alez B., Rivadulla F. // APL Materials. 2018. V. 6. Art. No. 091101.
  6. Fuentes V., Vasic B., Konstantinovic Z. et al. // J. Magn. Magn. Mater. 2020. V. 501. Art. No. 166419.
  7. Петржик А.М., Cristiani G., Логвенов Г. и др. // Письма в ЖТФ. 2017. Т. 43. № 12. С. 25; Petrzhik A.M., Cristiani G., Logvenov G. et al. // Tech. Phys. Lett. 2017. V. 43. No. 6. P. 554.
  8. Biswas A., Jeong Y.H. // Current Appl. Phys. 2017. V. 17. P. 605.
  9. Кислинский Ю.В., Овсянников Г.А., Петржик А.М. и др. // ФТТ. 2015. Т. 57. № 12. С. 2446; Kislinskii Yu.V., Ovsyannikov G.A., Petrzhik A.M. et al. // Phys. Solid State. 2015. V. 57. No. 12. P. 2519.
  10. Gao G., Schlottmann P. // Rep. Prog. Phys. 2018. V. 81. Art. No. 042502.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024