Production and electronic transport in thin films of strontium iridate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of the study of epitaxial thin films of SrIrO3 are presented, data on growth technology, crystal structure and electronic transport are presented. In SrIrO3 films received in a mixture of Ar and O2 gases, the dependence of resistance on temperature has a metallic character. For the films deposited in pure argon, the resistance versus temperature curves shows both a metallic and a dielectric behavior. It depends on the deposition pressure and the deposition temperature. The activation energy was calculated for dielectric samples and compared with the activation energy for Sr2IrO4 films.

Sobre autores

I. Moskal

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Autor responsável pela correspondência
Email: ivan.moscal@yandex.ru
Rússia, Moscow, 125009; Dolgoprudny, 141701

A. Petrzhik

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Rússia, Moscow, 125009

Yu. Kislinskii

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Rússia, Moscow, 125009

A. Shadrin

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: ivan.moscal@yandex.ru
Rússia, Moscow, 125009; Dolgoprudny, 141701

G. Ovsyannikov

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: ivan.moscal@yandex.ru
Rússia, Moscow, 125009

N. Dubitskiy

Russian Technological University – MIREA

Email: ivan.moscal@yandex.ru
Rússia, Moscow, 119454

Bibliografia

  1. Petrzhik A.M., Constantinian K.Y., Ovsyannikov G.A. et al. // Phys. Rev. B. 2019. V. 100. Art. No. 024501.
  2. Petrzhik A.M., Constantinian K.Y., Ovsyannikov G.A. et al. // J. Surf. Invest. X-Ray Synchrotron Neutron Techn. 2020. V. 14. No. 3. P. 547.
  3. Ovsyannikov G.A., Constantinian K.Y., Shmakov V.A. et al. // Phys. Rev. B. 2023. V. 107. Art. No. 144419.
  4. Kazunori Nishio, Harold Y. Hwang // APL Materials. 2016. V. 4. Art. No. 036102.
  5. Gutierrez-Llorente A., Iglesias L., Rodr’iguez-Gonz’alez B., Rivadulla F. // APL Materials. 2018. V. 6. Art. No. 091101.
  6. Fuentes V., Vasic B., Konstantinovic Z. et al. // J. Magn. Magn. Mater. 2020. V. 501. Art. No. 166419.
  7. Петржик А.М., Cristiani G., Логвенов Г. и др. // Письма в ЖТФ. 2017. Т. 43. № 12. С. 25; Petrzhik A.M., Cristiani G., Logvenov G. et al. // Tech. Phys. Lett. 2017. V. 43. No. 6. P. 554.
  8. Biswas A., Jeong Y.H. // Current Appl. Phys. 2017. V. 17. P. 605.
  9. Кислинский Ю.В., Овсянников Г.А., Петржик А.М. и др. // ФТТ. 2015. Т. 57. № 12. С. 2446; Kislinskii Yu.V., Ovsyannikov G.A., Petrzhik A.M. et al. // Phys. Solid State. 2015. V. 57. No. 12. P. 2519.
  10. Gao G., Schlottmann P. // Rep. Prog. Phys. 2018. V. 81. Art. No. 042502.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024