Carbon nanoparticle identification using transmission electron microscopy methods in biological samples

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Carbon nanoparticles are a common type of nanoparticles, the identification of which in biological samples is associated with great difficulties. It is demonstrated that the use of standard transmission electron microscopy in combination with the electron diffraction method is a reliable and relevant tool for the carbon nanoparticles identification in biological samples.

Sobre autores

A. Masyutin

Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University; Department of Pathomorphology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute

Autor responsável pela correspondência
Email: squiggoth@yandex.ru
Russia, 119234, Moscow; Russia, 107564, Moscow

E. Tarasova

Department of Pathomorphology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute

Email: squiggoth@yandex.ru
Russia, 107564, Moscow

G. Onishchenko

Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University

Email: squiggoth@yandex.ru
Russia, 119234, Moscow

M. Erokhina

Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University; Department of Pathomorphology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute

Email: squiggoth@yandex.ru
Russia, 119234, Moscow; Russia, 107564, Moscow

Bibliografia

  1. Simakov S.K. // Geosci. Front. 2018. V. 9. No. 6. P. 1849.
  2. Notarianni M., Liu J., Vernon K. et al. // Beilstein J. Nanotechnol. 2016. V. 7. P. 149.
  3. Bandlapalli C., SreeGaddam H.U., Chintmaneni P.K. et al. // Saudi J. Med. Pharm. Sci. 2021. V. 7. No. 8. P. 395.
  4. Suzuki S., Mori S. // J. Air Waste Manag. Assoc. 2017. V. 67. No. 8. P. 873.
  5. Losacco C., Perillo A. // Environ. Sci. Pollut. Res. 2018. V. 25. Art. No. 33901.
  6. Strojny B., Kurantowicz N., Sawosz E. et al. // PLoS ONE. 2015. V. 10. No. 12. Art. No. e0144821.
  7. Glaeser R.M., Gareth T. // Biophys. J. 1969. V. 9. No. 9. P. 1073.
  8. Yuan X., Zhang X., Sun L. et al. // Part. Fibre Toxicol. 2019. V. 1. No. 16. P. 18.
  9. Malatesta M. // Int. J. Mol. Sci. 2021. V. 22. P. 12789.
  10. Mühlfeld C., Rothen-Rutishauser B., Vanhecke D. et al. // Part. Fibre Toxicol. 2007. V. 4. Art. No. 11.
  11. Kurynina A.V., Erokhina M.V., Makarevich O.A. et al. // Biochem. 2018. V. 83. No. 3. P. 200.
  12. Кирпичников М.П. Порядок выявления и идентификации агрегатов многостенных углеродных нанотрубок в срезах тканей животных и растений методами аналитической электронной микроскопии: Методические рекомендации МР 1.2.0045-11. М.: ФЦГиЭ Роспотребнадзора, 2012. с. 39.
  13. Reynolds E.S. // J. Cell Biol. 1963. V. 1. No. 17. P. 208.
  14. Sasaki H., Arai H., Kikuchi E. et al. // Sci. Reports. 2022. V. 12. No. 1. P. 7756.
  15. Yildirimer L., Thanh N.T.K., Loizidou M. et al. // Nano Today. 2011. V. 6. No. 6. P. 585.
  16. Joshi A., Kaur S., Singh P. et al. // Appl. Nanosci. 2018. V. 6. No. 8. P. 1399.
  17. Nagaraju K., Reddy R., Reddy N. // J. Appl. Biomater. Funct. Mater. 2015. V. 4. No. 13. Art. No. e301-12.
  18. Coméra C., Cartier C., Gaultier E. et al. // Part. Fibre Toxicol. 2020. V. 1. No. 17. P. 26.
  19. Shebanova A. S., Bogdanov A.G., Ismagulova T.T. et al. // Biophysics. 2014. V. 2. No. 59. P. 284.
  20. Gass M., Porter A., Bendall J. et al. // Ultramicroscopy. 2009. No. 110. P. 946.
  21. Snyder-Talkington B.N., Schwegler-Berry D., Castranova V. et al. // Part. Fibre Toxicol. 2013. V. 10. P. 35.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (2MB)
3.

Baixar (3MB)
4.

Baixar (2MB)
5.

Baixar (1MB)

Declaração de direitos autorais © А.Г. Масютин, Е.К. Тарасова, Г.Е. Онищенко, М.В. Ерохина, 2023