Influence of metallophilic interactions on physicochemical properties of ion-conducting glass systems (1-x)(0.27Sb2Se3–0.73GeSe2)-xAg2Se

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of silver selenide concentration on plasticity, microfate and softening temperature interrelationship, energy of metal atoms in chalcogenide system (1-x)(0.27Sb2Se3–0.73GeSe2)-xAg2Se was presented. Particular attention is paid to a multiple increase in plasticity with an increase in silver selenide content in chalcogenide glasses. The observed effects are associated with the formation of metallophilic interactions of silver-silver. The studies are supplemented by the results of impedancemetry, due to the fact that metallophilic interactions in chalcogenide glass can actively influence not only the glass transition temperature, but also many other important properties, including the mechanism of electronic and ion conductivity.

Full Text

Restricted Access

About the authors

V. V. Tomaev

St. Petersburg Institute of Technology (Technical University); Saint Petersburg State University

Author for correspondence.
Email: tvaza@mail.ru
Russian Federation, Saint Petersburg; Saint Petersburg

Y. S. Tverjanovich

Saint Petersburg State University

Email: tys@bk.ru
Russian Federation, Saint Petersburg

S. S. Lunkov

Saint Petersburg State University

Email: tvaza@mail.ru
Russian Federation, Saint Petersburg

S. А. Zaitseva

St. Petersburg Institute of Technology (Technical University); Saint Petersburg State University

Email: tvaza@mail.ru
Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Chen, K., Pan, J., Yin, W., Ma, C., and Wan, L., Flexible electronics based on one-dimensional inorganic semiconductor nanowires and two-dimensional transition metal dichalcogenides, Chinese Chem. Letters, 2023, vol. 34, 108226, 16 p.
  2. Chen, H., Wei, T.-R., Zhao, K., Qiu, P., Chen, L., He, J., and Shi, X., Room-temperature plastic inorganic semiconductors for flexible and deformable electronics, InfoMat, 2021, vol. 3, p. 22.
  3. Li, H., Cao, Y., Wang, Z., and Feng, X., Flexible and stretchable inorganic optoelectronics, Optical Mater. Express, 2019, vol. 9, no. 10, p. 4024.
  4. Gao, W., Ota, H., Kiriya, D., Takei, K., and Javey, A., Flexible Electronics toward Wearable Sensing, Acc. Chem. Res., 2019, vol. 52, p. 523.
  5. Hu, J., Dun, G., Geng, X., Chen, J., Wu, X., and Ren, T.-L., Recent progress in flexible micro-pressure sensors for wearable health monitoring, Nanoscale Adv., 2023, vol. 5, p. 3131.
  6. Kim, J., Lee, J., Son, D., Choi, M. K., and Kim, D.H., Deformable devices with integrated functional nanomaterials for wearable electronics, Nano Convergence, 2016, vol. 3, no. 4, p. 13.
  7. Vu, C.C., Kim, S.J., & Kim, J., Flexible wearable sensors – an update in view of touch-sensing, Sci. and Technol. Adv. Mater., 2021, vol. 22, no. 1, p. 26.
  8. Amani, A. M., Tayebi, L., Abbasi, M., Vaez, A., Kamyab, H., Chelliapan, S., and Vafa, E., The Need for Smart Materials in an Expanding Smart World: MXene-Based Wearable Electronics and Their Advantageous Applications, ACS Omega, 2024, vol. 9, no. 3, p. 3123.
  9. Pisula, W., Inorganic Semiconductors in Electronic Applications, Electron. Mater., 2023, vol. 4, p. 136.
  10. Wang, S., Sun, M., and Hung, N.T., Advanced Inorganic Semiconductor Materials, Inorganics, 2024, vol. 12, p. 81.
  11. Sun, Y. and Rogers, J. A., Inorganic Semiconductors for Flexible Electronics, Adv. Mater., 2007, vol. 19, p. 1897.
  12. Shi, X., Chen, H., Hao, F., Liu, R., Wang, T., Qiu, P., Burkhardt, U., Grin, Y., and Chen, L., Room-temperature ductile inorganic semiconductor, Nature Mater, 2018, vol. 17, p. 421.
  13. Liang J., Wang T., Qiu P., Yang S., Ming C., Chen H., Song Q., Zhao K., Wei T.-R., Ren D., Sun Y.-Y., Shi X., He J., Chen L., Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices, Energy & Environmental Sci., 2019, vol. 17, no. 8, p. 9.
  14. Min, Zhu, Xiao-Lei, Shi, Hao, Wu, Qingfeng, Liu, and Zhi-Gang, Chen, Advances in Ag2S-based thermoelectrics for wearable electronics: Progress and perspective, Chem. Engineering J., 2023, vol. 475, p. 146194. 17 p.
  15. Sadovnikov, S.I., Kostenko, M.G., Gusev, A.I., and Lukoyanov, A.V., Low-Temperature Predicted Structures of Ag2S (Silver Sulfide), Nanomaterials, 2023, vol. 13, p. 2638. 21 p.
  16. Ge, B., Li, R., Zhu, M., Yu, Y., and Zhou, C., Deformation Mechanisms of Inorganic Thermoelectric Materials with Plasticity, Adv. Energy Sustainability Res., 2024, vol. 5, p. 2300197. 11 p.
  17. Zhu, Y., Liang, J.-S., Shi, X., and Zhang, Z., Full-Inorganic Flexible Ag2S Memristor with Interface Resistance–Switching for Energy-Efficient Computing, ACS Appl. Mater. Interfaces, 2022, vol. 14, p. 43482.
  18. Wong, W.S. and Salleo, A., eds. Flexible Electronics: Materials and Applications William S. Wong and Alberto Salleo, eds. Springer. ISBN 978-0-387-74362-2, 2009. 462 p.
  19. Kim, D.-H., Lu, N., Ghaffari, R., and Rogers, J.A., Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics, NPG Asia Materials, 2012, vol. 4, 9 p.
  20. Wang, C., Cheng, R., Liao, L., and Duan, X., High performance thin film electronics based on inorganic nanostructures and composites, Nano Today, 2013, vol. 8, p. 514.
  21. Jang, H.-J., Lee, K. J., Jo, K.-W., Katz, H.E., Cho, W.-J., and Shin, Y.-B., Top-down Fabrication and Enhanced Active Area Electronic Characteristics of Amorphous Oxide Nanoribbons for Flexible Electronics, Scientific Reports, 2017, vol. 7, p. 5728. 9 p.
  22. Martinez, R.V., Flexible Electronics: Fabrication and Ubiquitous Integration, Micromachines, 2018, vol. 9, p. 605.
  23. Gupta, S., Navaraj, W. T., Lorenzelli, L., and Dahiya, R., Ultra-thin chips for high-performance flexible electronics, npj Flex Electronics, 2018, vol. 8, 17 p.
  24. Li, L., Han, L., Hu, H., and Zhang, R., A review on polymers and their composites for flexible electronics, Mater. Adv., 2023, vol. 4, p. 726.
  25. Ling, H., Liu, S., Zheng, Z., and Yan, F., Organic Flexible Electronics, Small Methods, 2018, vol. 2, p. 1800070. 33 p.
  26. Liu, H., Liu, D., Yang, J., Gao, H., and Wu, Y., Flexible Electronics Based on Organic Semiconductors: from Patterned Assembly to Integrated Applications, Small, 2023, vol. 19, p. 2206938. 27 p.
  27. Patent US2016/0002103 A1. Chemically Toughened Flexible Ultrathin Glass. Inventor: Xi Wang, Feng He, Jose Zimmer. Pub. No.: US2016/0002103 A1. Pub. Date: Jan. 7, 2016. 2016-01-07. Publ. US20160002103A1. CO3C5/00 (2006.01).
  28. Langgemach, W., Baumann, A., Ehrhardt, M., Preußner, T., and Rädlein, E., The strength of uncoated and coated ultra-thin flexible glass under cyclic, AIMS Mater. Sci., 2024, vol. 11, no. 2, p. 343.
  29. Garner, S., Glaesemann, S., and Li, X., Ultra-slim flexible glass for roll-to-roll electronic device fabrication, Appl. Phys. A, 2014, August. doi: 10.1007/s00339-014-8468-2
  30. Yan, J., Zhou, T., Masuda, J., and Kuriyagawa, T., Modeling high-temperature glass molding process by coupling heat transfer and viscous deformation analysis, Precision Engineering, 2009, vol. 33, p. 150.
  31. Tveryanovich, Y.S., Fazletdinov, T.R., Tverjanovich, A.S., Fadin, Y.A., and Nikolskii, A.B., Features of Chemical Interactions in Silver Chalcogenides Responsible for Their High Plasticity, Russ. J. Gen. Chem., 2020, vol. 90, no. 11, p. 2203.
  32. Tveryanovich, Yu.S., Fazletdinov, T.R., Tverjanovich, А.S., Pankin, D.V., Smirnov, E.V., Tolochko, O.V., Panov, M.S., Churbanov, M.F., Skripachev, I.V., and Shevelko, M.M., Increasing the Plasticity of Chalcogenide Glasses in the System Ag2Se–Sb2Se3–GeSe2, Chem. Mater., 2022, vol. 34, no. 6, p. 2743.
  33. Tveryanovich, Yu.S., Fazletdinov, T.R., and Tomaev, V.V., Russ. J. Electrochem., 2023, vol. 59, no. 8, p. 567.
  34. Borisova, Z., Glassy Semiconductors, Springer US, 1981, 506 p.
  35. Tveryanovich, Yu.S., Some ideas in chemistry and physics of chalcogenide glass, p. 147–157 // International year of glass in Russia. Scientific conference proceedings, 2022. ISBN: AIIR. 190 c. ISBN 978-5-906224-14-9
  36. Yang, D., Shi, X.-L., Li, M., Nisar, M., Mansoor, A., Chen, S., Chen, Y., Li, F., Ma, H., Liang, G.X., Zhang, X., Liu, W., Fan, P., Zheng, Z., and Chen, Z.-G., Flexible power generators by Ag2Se thin films with record-high thermoelectric performance, Nature Commun., 2024, vol. 1, no. 5, p. 923. 11 p.
  37. Yang, Q., Yang, S., Qiu, P., Peng, L., Wei, T.-R., Zhang, Z., Shi, X., and Chen, L., Flexible thermoelectrics based on ductile semiconductors, Science, 2022, vol. 377, no. 8, p. 854.
  38. Evarestov, R.A, Panin, A.I, and Tverjanovich, Y.S., Argentophillic interactions in argentum chalcogenides: First principles calculations and topological analysis of electron density, J. Comput. Chem., 2021, vol. 42, no. 4, p. 242.
  39. Vassilev, V.S., Boycheva, S.V., and Ivanova, Z.G., Glass formation and physicochemical properties of the GeSe2–Sb2Se3–Ag2Se(ZnSe) systems, J. Mater. Sci. Letters, 1998, vol. 17, p. 2007.
  40. Olekseyuk, I.D., Kogut, Yu.M., Parasyuk, O.V., Piskach, L.V., Gorgut, G.P., Kus’ko, O.P., Pekhnyo, V.I., and Volkov, S.V., Glass-formation in the Ag2Se–Zn(Cd, Hg)Se–GeSe2 systems, Chem. Met. Alloys, 2009, vol. 2, p. 146.
  41. Milman, Y. V., Galanov, B. A., and Chugunova, S.I., Plasticity characteristic obtained through hardness measurement, Acta Metallurgica et Materialia, 1993, vol. 41, no. 9, p. 2523.
  42. Tveryanovich, Y.S., Fokina, S.V., Borisov, E.N., and Tomaev, V.V., Preparation of films of vitreous solid electrolyte (GeSe2)30 (Sb2Se3)30 (AgI) 40 using laser ablation method, Glass Phys Chem., 2015, vol. 41, p. 440.
  43. Tomaev, V.V., Tveryanovich, Yu.S., Balmakov, M.D., Zvereva, I.A., and Missyul, A.B., Ionic Conductovity of Ionic Conductivity of (As2Ss3)1–x (AgHal) x (Hal = I, Br) Nanocomposites Glass Physics and Chemistry, Glass Phys. Chem., 2010, vol. 36, no. 4, p. 455.
  44. Kitaigorodskii, A. I., Glass structure and methods of its investigation by means of X-ray structural analysis, UFN, 1938, vol. 19, no. 2, p. 201.
  45. http://www.netzsch-thermal-analysis.com/
  46. Briggs, D., Surface analysis by the methods of Ohm and X-ray photoelectronic spectroscopy. M.: Mir, 1984, 140 p.
  47. Astafiev, E. A. and Shkerin, S. H., Instruments for impedance measurement: the relationship of price-quality-functionality, International Scientific Journal for Alternative Energy and Ecology, 2008, vol. 58, p. 150.
  48. Olivier, M., Tchahame, J. C., Němec, P., Chauvet, M., Besse, V., Cassagne, C., Boudebs, G., Renversez, G., Boidin, R., Baudet, E., and Nazabal, V., Structure, Nonlinear Properties, and Photosensitivity of (GeSe2)100–x (Sb2Se3)x Glasses, Opt. Mater. Express, 2014, vol. 4, p. 525.
  49. Tveryanovich, Yu.S., Aleksandrov, V.V., Murin, I.V., and Nedoshovenko, E.G., Glass-forming ability and cationic transport in gallium containing chalcogenide glasses, J. Non-Cryst. Sol., 1999, vol. 256–257, p. 237.
  50. Bychkov, E.A., Tveryanovich, Yu.S., and Vlasov, Yu.G., Ion Conductivity and Sensors. In Semiconductors and Semimetals, 2004, V. 80, “Semiconducting Chalcogenide Glasses III”, p. 103–168.

Supplementary files

Supplementary Files
Action
1. JATS XML

Note

2 Based on the materials of the lecture at the 17th International Meeting “Fundamental and Applied Problems of Solid State Ionics”, Chernogolovka, June 16–23, 2024.


Copyright (c) 2025 Russian Academy of Sciences