Влияние металлофильных взаимодействий на физико-химические свойства ионпроводящих стекол системы (1-x)(0.27Sb2Se3–0.73GeSe2)-xAg2Se
- Авторы: Томаев В.В.1,2, Тверьянович Ю.С.2, Луньков С.С.2, Зайцева С.А.1,2
-
Учреждения:
- Санкт-Петербургский технологический институт (технический университет)
- Санкт-Петербургский государственный университет
- Выпуск: Том 61, № 1 (2025)
- Страницы: 84-92
- Раздел: Специальный выпуск на основе докладов на 17-м Международном Совещании “Фундаментальные и прикладные проблемы ионики твердого тела” (Черноголовка, 16–23 июня 2024 г.)
- URL: https://jdigitaldiagnostics.com/0424-8570/article/view/683948
- DOI: https://doi.org/10.31857/S0424857025010043
- EDN: https://elibrary.ru/DKSFOI
- ID: 683948
Цитировать
Аннотация
Представлен анализ влияния концентрации селенида серебра на пластичность, взаимосвязь микротвердости и температуры размягчения, энергию связи атомов металла в халькогенидных стеклах системы (1-x)(0.27Sb2Se3–0.73GeSe2)-xAg2Se. Особое внимание обращено на кратное увеличение пластичности при увеличении содержания селенида серебра в халькогенидных стеклах. Наблюдаемые эффекты связываются с формированием металлофильных взаимодействий серебро–серебро. Исследования дополнены результатами импедансометрии в связи с тем, что металлофильные взаимодействия в халькогенидных стеклах могут активно влиять не только на температуру стеклования, но и на многие другие важные свойства, включая механизм электронной и ионной проводимости.
Полный текст

Об авторах
В. В. Томаев
Санкт-Петербургский технологический институт (технический университет); Санкт-Петербургский государственный университет
Автор, ответственный за переписку.
Email: tvaza@mail.ru
Россия, Санкт-Петербург; Санкт-Петербург
Ю. С. Тверьянович
Санкт-Петербургский государственный университет
Email: tys@bk.ru
Россия, Санкт-Петербург
С. С. Луньков
Санкт-Петербургский государственный университет
Email: tvaza@mail.ru
Россия, Санкт-Петербург
С. А. Зайцева
Санкт-Петербургский технологический институт (технический университет); Санкт-Петербургский государственный университет
Email: tvaza@mail.ru
Россия, Санкт-Петербург; Санкт-Петербург
Список литературы
- Chen, K., Pan, J., Yin, W., Ma, C., and Wan, L., Flexible electronics based on one-dimensional inorganic semiconductor nanowires and two-dimensional transition metal dichalcogenides, Chinese Chem. Letters, 2023, vol. 34, 108226, 16 p.
- Chen, H., Wei, T.-R., Zhao, K., Qiu, P., Chen, L., He, J., and Shi, X., Room-temperature plastic inorganic semiconductors for flexible and deformable electronics, InfoMat, 2021, vol. 3, p. 22.
- Li, H., Cao, Y., Wang, Z., and Feng, X., Flexible and stretchable inorganic optoelectronics, Optical Mater. Express, 2019, vol. 9, no. 10, p. 4024.
- Gao, W., Ota, H., Kiriya, D., Takei, K., and Javey, A., Flexible Electronics toward Wearable Sensing, Acc. Chem. Res., 2019, vol. 52, p. 523.
- Hu, J., Dun, G., Geng, X., Chen, J., Wu, X., and Ren, T.-L., Recent progress in flexible micro-pressure sensors for wearable health monitoring, Nanoscale Adv., 2023, vol. 5, p. 3131.
- Kim, J., Lee, J., Son, D., Choi, M. K., and Kim, D.H., Deformable devices with integrated functional nanomaterials for wearable electronics, Nano Convergence, 2016, vol. 3, no. 4, p. 13.
- Vu, C.C., Kim, S.J., & Kim, J., Flexible wearable sensors – an update in view of touch-sensing, Sci. and Technol. Adv. Mater., 2021, vol. 22, no. 1, p. 26.
- Amani, A. M., Tayebi, L., Abbasi, M., Vaez, A., Kamyab, H., Chelliapan, S., and Vafa, E., The Need for Smart Materials in an Expanding Smart World: MXene-Based Wearable Electronics and Their Advantageous Applications, ACS Omega, 2024, vol. 9, no. 3, p. 3123.
- Pisula, W., Inorganic Semiconductors in Electronic Applications, Electron. Mater., 2023, vol. 4, p. 136.
- Wang, S., Sun, M., and Hung, N.T., Advanced Inorganic Semiconductor Materials, Inorganics, 2024, vol. 12, p. 81.
- Sun, Y. and Rogers, J. A., Inorganic Semiconductors for Flexible Electronics, Adv. Mater., 2007, vol. 19, p. 1897.
- Shi, X., Chen, H., Hao, F., Liu, R., Wang, T., Qiu, P., Burkhardt, U., Grin, Y., and Chen, L., Room-temperature ductile inorganic semiconductor, Nature Mater, 2018, vol. 17, p. 421.
- Liang J., Wang T., Qiu P., Yang S., Ming C., Chen H., Song Q., Zhao K., Wei T.-R., Ren D., Sun Y.-Y., Shi X., He J., Chen L., Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices, Energy & Environmental Sci., 2019, vol. 17, no. 8, p. 9.
- Min, Zhu, Xiao-Lei, Shi, Hao, Wu, Qingfeng, Liu, and Zhi-Gang, Chen, Advances in Ag2S-based thermoelectrics for wearable electronics: Progress and perspective, Chem. Engineering J., 2023, vol. 475, p. 146194. 17 p.
- Sadovnikov, S.I., Kostenko, M.G., Gusev, A.I., and Lukoyanov, A.V., Low-Temperature Predicted Structures of Ag2S (Silver Sulfide), Nanomaterials, 2023, vol. 13, p. 2638. 21 p.
- Ge, B., Li, R., Zhu, M., Yu, Y., and Zhou, C., Deformation Mechanisms of Inorganic Thermoelectric Materials with Plasticity, Adv. Energy Sustainability Res., 2024, vol. 5, p. 2300197. 11 p.
- Zhu, Y., Liang, J.-S., Shi, X., and Zhang, Z., Full-Inorganic Flexible Ag2S Memristor with Interface Resistance–Switching for Energy-Efficient Computing, ACS Appl. Mater. Interfaces, 2022, vol. 14, p. 43482.
- Wong, W.S. and Salleo, A., eds. Flexible Electronics: Materials and Applications William S. Wong and Alberto Salleo, eds. Springer. ISBN 978-0-387-74362-2, 2009. 462 p.
- Kim, D.-H., Lu, N., Ghaffari, R., and Rogers, J.A., Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics, NPG Asia Materials, 2012, vol. 4, 9 p.
- Wang, C., Cheng, R., Liao, L., and Duan, X., High performance thin film electronics based on inorganic nanostructures and composites, Nano Today, 2013, vol. 8, p. 514.
- Jang, H.-J., Lee, K. J., Jo, K.-W., Katz, H.E., Cho, W.-J., and Shin, Y.-B., Top-down Fabrication and Enhanced Active Area Electronic Characteristics of Amorphous Oxide Nanoribbons for Flexible Electronics, Scientific Reports, 2017, vol. 7, p. 5728. 9 p.
- Martinez, R.V., Flexible Electronics: Fabrication and Ubiquitous Integration, Micromachines, 2018, vol. 9, p. 605.
- Gupta, S., Navaraj, W. T., Lorenzelli, L., and Dahiya, R., Ultra-thin chips for high-performance flexible electronics, npj Flex Electronics, 2018, vol. 8, 17 p.
- Li, L., Han, L., Hu, H., and Zhang, R., A review on polymers and their composites for flexible electronics, Mater. Adv., 2023, vol. 4, p. 726.
- Ling, H., Liu, S., Zheng, Z., and Yan, F., Organic Flexible Electronics, Small Methods, 2018, vol. 2, p. 1800070. 33 p.
- Liu, H., Liu, D., Yang, J., Gao, H., and Wu, Y., Flexible Electronics Based on Organic Semiconductors: from Patterned Assembly to Integrated Applications, Small, 2023, vol. 19, p. 2206938. 27 p.
- Patent US2016/0002103 A1. Chemically Toughened Flexible Ultrathin Glass. Inventor: Xi Wang, Feng He, Jose Zimmer. Pub. No.: US2016/0002103 A1. Pub. Date: Jan. 7, 2016. 2016-01-07. Publ. US20160002103A1. CO3C5/00 (2006.01).
- Langgemach, W., Baumann, A., Ehrhardt, M., Preußner, T., and Rädlein, E., The strength of uncoated and coated ultra-thin flexible glass under cyclic, AIMS Mater. Sci., 2024, vol. 11, no. 2, p. 343.
- Garner, S., Glaesemann, S., and Li, X., Ultra-slim flexible glass for roll-to-roll electronic device fabrication, Appl. Phys. A, 2014, August. doi: 10.1007/s00339-014-8468-2
- Yan, J., Zhou, T., Masuda, J., and Kuriyagawa, T., Modeling high-temperature glass molding process by coupling heat transfer and viscous deformation analysis, Precision Engineering, 2009, vol. 33, p. 150.
- Tveryanovich, Y.S., Fazletdinov, T.R., Tverjanovich, A.S., Fadin, Y.A., and Nikolskii, A.B., Features of Chemical Interactions in Silver Chalcogenides Responsible for Their High Plasticity, Russ. J. Gen. Chem., 2020, vol. 90, no. 11, p. 2203.
- Tveryanovich, Yu.S., Fazletdinov, T.R., Tverjanovich, А.S., Pankin, D.V., Smirnov, E.V., Tolochko, O.V., Panov, M.S., Churbanov, M.F., Skripachev, I.V., and Shevelko, M.M., Increasing the Plasticity of Chalcogenide Glasses in the System Ag2Se–Sb2Se3–GeSe2, Chem. Mater., 2022, vol. 34, no. 6, p. 2743.
- Tveryanovich, Yu.S., Fazletdinov, T.R., and Tomaev, V.V., Russ. J. Electrochem., 2023, vol. 59, no. 8, p. 567.
- Borisova, Z., Glassy Semiconductors, Springer US, 1981, 506 p.
- Tveryanovich, Yu.S., Some ideas in chemistry and physics of chalcogenide glass, p. 147–157 // International year of glass in Russia. Scientific conference proceedings, 2022. ISBN: AIIR. 190 c. ISBN 978-5-906224-14-9
- Yang, D., Shi, X.-L., Li, M., Nisar, M., Mansoor, A., Chen, S., Chen, Y., Li, F., Ma, H., Liang, G.X., Zhang, X., Liu, W., Fan, P., Zheng, Z., and Chen, Z.-G., Flexible power generators by Ag2Se thin films with record-high thermoelectric performance, Nature Commun., 2024, vol. 1, no. 5, p. 923. 11 p.
- Yang, Q., Yang, S., Qiu, P., Peng, L., Wei, T.-R., Zhang, Z., Shi, X., and Chen, L., Flexible thermoelectrics based on ductile semiconductors, Science, 2022, vol. 377, no. 8, p. 854.
- Evarestov, R.A, Panin, A.I, and Tverjanovich, Y.S., Argentophillic interactions in argentum chalcogenides: First principles calculations and topological analysis of electron density, J. Comput. Chem., 2021, vol. 42, no. 4, p. 242.
- Vassilev, V.S., Boycheva, S.V., and Ivanova, Z.G., Glass formation and physicochemical properties of the GeSe2–Sb2Se3–Ag2Se(ZnSe) systems, J. Mater. Sci. Letters, 1998, vol. 17, p. 2007.
- Olekseyuk, I.D., Kogut, Yu.M., Parasyuk, O.V., Piskach, L.V., Gorgut, G.P., Kus’ko, O.P., Pekhnyo, V.I., and Volkov, S.V., Glass-formation in the Ag2Se–Zn(Cd, Hg)Se–GeSe2 systems, Chem. Met. Alloys, 2009, vol. 2, p. 146.
- Milman, Y. V., Galanov, B. A., and Chugunova, S.I., Plasticity characteristic obtained through hardness measurement, Acta Metallurgica et Materialia, 1993, vol. 41, no. 9, p. 2523.
- Tveryanovich, Y.S., Fokina, S.V., Borisov, E.N., and Tomaev, V.V., Preparation of films of vitreous solid electrolyte (GeSe2)30 (Sb2Se3)30 (AgI) 40 using laser ablation method, Glass Phys Chem., 2015, vol. 41, p. 440.
- Tomaev, V.V., Tveryanovich, Yu.S., Balmakov, M.D., Zvereva, I.A., and Missyul, A.B., Ionic Conductovity of Ionic Conductivity of (As2Ss3)1–x (AgHal) x (Hal = I, Br) Nanocomposites Glass Physics and Chemistry, Glass Phys. Chem., 2010, vol. 36, no. 4, p. 455.
- Kitaigorodskii, A. I., Glass structure and methods of its investigation by means of X-ray structural analysis, UFN, 1938, vol. 19, no. 2, p. 201.
- http://www.netzsch-thermal-analysis.com/
- Briggs, D., Surface analysis by the methods of Ohm and X-ray photoelectronic spectroscopy. M.: Mir, 1984, 140 p.
- Astafiev, E. A. and Shkerin, S. H., Instruments for impedance measurement: the relationship of price-quality-functionality, International Scientific Journal for Alternative Energy and Ecology, 2008, vol. 58, p. 150.
- Olivier, M., Tchahame, J. C., Němec, P., Chauvet, M., Besse, V., Cassagne, C., Boudebs, G., Renversez, G., Boidin, R., Baudet, E., and Nazabal, V., Structure, Nonlinear Properties, and Photosensitivity of (GeSe2)100–x (Sb2Se3)x Glasses, Opt. Mater. Express, 2014, vol. 4, p. 525.
- Tveryanovich, Yu.S., Aleksandrov, V.V., Murin, I.V., and Nedoshovenko, E.G., Glass-forming ability and cationic transport in gallium containing chalcogenide glasses, J. Non-Cryst. Sol., 1999, vol. 256–257, p. 237.
- Bychkov, E.A., Tveryanovich, Yu.S., and Vlasov, Yu.G., Ion Conductivity and Sensors. In Semiconductors and Semimetals, 2004, V. 80, “Semiconducting Chalcogenide Glasses III”, p. 103–168.
Дополнительные файлы

Примечание
1 По материалам доклада на 17-м Международном Совещании “Фундаментальные и прикладные проблемы ионики твердого тела”, Черноголовка, 16–23 июня 2024 г.