Application of Nanoparticles for Efficient Delivery of Quercetin in Cancer Cells


Cite item

Full Text

Abstract

Quercetin (Qu, 3,5,7,3’, 4’-pentahydroxyflavanone) is a natural polyphenol compound abundantly found in health food or plant-based products. In recent decades, Qu has gained significant attention in the food, cosmetic, and pharmaceutic industries owning to its wide beneficial therapeutic properties such as antioxidant, anti-inflammatory and anticancer activities. Despite the favorable roles of Qu in cancer therapy due to its numerous impacts on the cell signaling axis, its poor chemical stability and bioavailability, low aqueous solubility as well as short biological half-life have limited its clinical application. Recently, drug delivery systems based on nanotechnology have been developed to overcome such limitations and enhance the Qu biodistribution following administration. Several investigations have indicated that the nano-formulation of Qu enjoys more remarkable anticancer effects than its free form. Furthermore, incorporating Qu in various nano-delivery systems improved its sustained release and stability, extended its circulation time, enhanced its accumulation at target sites, and increased its therapeutic efficiency. The purpose of this study was to provide a comprehensive review of the anticancer properties of various Qu nano-formulation to augment their effects on different malignancies. Various targeting strategies for improving Qu delivery, including nanoliposomes, lipids, polymeric, micelle, and inorganic nanoparticle NPs, have been discussed in this review. The results of the current study illustrated that a combination of appropriate nano encapsulation approaches with tumor-oriented targeting delivery might lead to establishing QU nanoparticles that can be a promising technique for cancer treatment.

About the authors

Mina Homayoonfal

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences

Email: info@benthamscience.net

Azadeh Aminianfar

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences

Email: info@benthamscience.net

Zatollah Asemi

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Bahman Yousefi

Molecular Medicine Research Center, Tabriz University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Seyfried, T.N.; Shelton, L.M. Cancer as a metabolic disease. Nutr. Metab., 2010, 7(1), 7. doi: 10.1186/1743-7075-7-7 PMID: 20181022
  2. Jing, Z.; Du, Q.; Zhang, X.; Zhang, Y. Nanomedicines and nanomaterials for cancer therapy: Progress, challenge and perspectives. Chem. Eng. J., 2022, 446, 137147. doi: 10.1016/j.cej.2022.137147
  3. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  4. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789. doi: 10.1002/ijc.33588 PMID: 33818764
  5. Ghanbari-Movahed, M.; Mondal, A.; Farzaei, M.H.; Bishayee, A. Quercetin- and rutin-based nano-formulations for cancer treatment: A systematic review of improved efficacy and molecular mechanisms. Phytomedicine, 2022, 97, 153909. doi: 10.1016/j.phymed.2021.153909 PMID: 35092896
  6. Yafout, M.; Ousaid, A.; Khayati, Y.; El Otmani, I.S. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Sci. Am., 2021, 11, e00685.
  7. Sanati, M.; Afshari, A.R.; Amini, J.; Mollazadeh, H.; Jamialahmadi, T.; Sahebkar, A. Targeting angiogenesis in gliomas: Potential role of phytochemicals. J. Funct. Foods, 2022, 96, 105192. doi: 10.1016/j.jff.2022.105192
  8. Chikara, S.; Nagaprashantha, L.D.; Singhal, J.; Horne, D.; Awasthi, S.; Singhal, S.S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett., 2018, 413, 122-134. doi: 10.1016/j.canlet.2017.11.002 PMID: 29113871
  9. Cragg, G.M.; Pezzuto, J.M. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract., 2016, 25(Suppl 2), 41-59. doi: 10.1159/000443404 PMID: 26679767
  10. Mohapatra, P.; Singh, P.; Singh, D.; Sahoo, S.; Sahoo, S.K. Phytochemical based nanomedicine: A panacea for cancer treatment, present status and future prospective. OpenNano, 2022, 7, 100055.
  11. Hashemi Goradel, N.; Ghiyami-Hour, F.; Jahangiri, S.; Negahdari, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. Nanoparticles as new tools for inhibition of cancer angiogenesis. J. Cell. Physiol., 2018, 233(4), 2902-2910. doi: 10.1002/jcp.26029 PMID: 28543172
  12. Schroeder, A.; Heller, D.A.; Winslow, M.M.; Dahlman, J.E.; Pratt, G.W.; Langer, R.; Jacks, T.; Anderson, D.G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer, 2012, 12(1), 39-50. doi: 10.1038/nrc3180 PMID: 22193407
  13. Davis, ME; Chen, Z; Shin, DM Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov, 2010, 7(9), 771-82.
  14. Tran, T.T.D.; Tran, P.H.L. Nanoconjugation and encapsulation strategies for improving drug delivery and therapeutic efficacy of poorly water-soluble drugs. Pharmaceutics, 2019, 11(7), 325. doi: 10.3390/pharmaceutics11070325 PMID: 31295947
  15. Jindal, A.B. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int. J. Pharm., 2017, 532(1), 450-465. doi: 10.1016/j.ijpharm.2017.09.028 PMID: 28917985
  16. Feng, L.; Mumper, R.J. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett., 2013, 334(2), 157-175. doi: 10.1016/j.canlet.2012.07.006 PMID: 22796606
  17. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Seminars in cancer biology., 2021.
  18. Zang, X.; Cheng, M.; Zhang, X.; Chen, X. Quercetin nanoformulations: A promising strategy for tumor therapy. Food Funct., 2021, 12(15), 6664-6681. doi: 10.1039/D1FO00851J PMID: 34152346
  19. Wang, G.; Wang, J.J.; Chen, X.L.; Du, L.; Li, F. Quercetin-loaded freeze-dried nanomicelles: Improving absorption and anti-glioma efficiency in vitro and in vivo. J. Control. Release, 2016, 235, 276-290. doi: 10.1016/j.jconrel.2016.05.045 PMID: 27242199
  20. Williams, R.J.; Spencer, J.P.E.; Rice-Evans, C. Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med., 2004, 36(7), 838-849. doi: 10.1016/j.freeradbiomed.2004.01.001 PMID: 15019969
  21. Beecher, G.R. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J. Nutr., 2003, 133(10), 3248S-3254S. doi: 10.1093/jn/133.10.3248S PMID: 14519822
  22. Mariani, C.; Braca, A.; Vitalini, S.; De Tommasi, N.; Visioli, F.; Fico, G. Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L. (Ranunculaceae). Phytochemistry, 2008, 69(5), 1220-1226. doi: 10.1016/j.phytochem.2007.12.009 PMID: 18226822
  23. Thangasamy, T.; Sittadjody, S.; Burd, R. Chapter 27 - Quercetin: A Potential Complementary and Alternative Cancer Therapy. In: Complementary and Alternative Therapies and the Aging Population Elsvier: Amsterdam; , 2009; pp. 563-584.
  24. Lee, T.J.; Kim, O.H.; Kim, Y.H.; Lim, J.H.; Kim, S.; Park, J.W.; Kwon, T.K. Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells. Cancer Lett., 2006, 240(2), 234-242. doi: 10.1016/j.canlet.2005.09.013 PMID: 16274926
  25. Jeong, J.H.; An, J.Y.; Kwon, Y.T.; Rhee, J.G.; Lee, Y.J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. J. Cell. Biochem., 2009, 106(1), 73-82. doi: 10.1002/jcb.21977 PMID: 19009557
  26. Zhang, Q.; Zhao, X.H.; Wang, Z.J. Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis. Toxicol. In Vitro, 2009, 23(5), 797-807. doi: 10.1016/j.tiv.2009.04.007 PMID: 19397994
  27. Catanzaro, D.; Ragazzi, E.; Vianello, C.; Caparrotta, L.; Montopoli, M. Effect of quercetin on cell cycle and cyclin expression in ovarian carcinoma and osteosarcoma cell lines. Nat. Prod. Commun., 2015, 10(8), 1365-8. doi: 10.1177/1934578X1501000813
  28. Chou, C.C.; Yang, J.S.; Lu, H.F.; Ip, S.W.; Lo, C.; Wu, C.C.; Lin, J.P.; Tang, N.Y.; Chung, J.G.; Chou, M.J.; Teng, Y.H.; Chen, D.R. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch. Pharm. Res., 2010, 33(8), 1181-1191. doi: 10.1007/s12272-010-0808-y PMID: 20803121
  29. Vidya Priyadarsini, R.; Senthil Murugan, R.; Maitreyi, S.; Ramalingam, K.; Karunagaran, D.; Nagini, S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur. J. Pharmacol., 2010, 649(1-3), 84-91. doi: 10.1016/j.ejphar.2010.09.020 PMID: 20858478
  30. Hisaka, T.; Sakai, H.; Sato, T.; Goto, Y.; Nomura, Y.; Fukutomi, S.; Fujita, F.; Mizobe, T.; Nakashima, O.; Tanigawa, M.; Naito, Y.; Akiba, J.; Ogasawara, S.; Nakashima, K.; Akagi, Y.; Okuda, K.; Yano, H. Quercetin suppresses proliferation of liver cancer cell lines in vitro. Anticancer Res., 2020, 40(8), 4695-4700. doi: 10.21873/anticanres.14469 PMID: 32727794
  31. Al-Ghamdi, M.A.; AL-Enazy, A.; Huwait, E.A.; Albukhari, A.; Harakeh, S.; Moselhy, S.S. Enhancement of Annexin V in response to combination of epigallocatechin gallate and quercetin as a potent arrest the cell cycle of colorectal cancer. Braz. J. Biol., 2023, 83, e248746. doi: 10.1590/1519-6984.248746 PMID: 34495165
  32. Azizi, E.; Fouladdel, S.; Komeili Movahhed, T.; Modaresi, F.; Barzegar, E.; Ghahremani, M.H.; Ostad, S.N.; Atashpour, S. Quercetin effects on cell cycle arrest and apoptosis and doxorubicin activity in T47D cancer stem cells. Asian Pac. J. Cancer Prev., 2022, 23(12), 4145-4154. doi: 10.31557/APJCP.2022.23.12.4145 PMID: 36579996
  33. Fernald, K.; Kurokawa, M. Evading apoptosis in cancer. Trends Cell Biol., 2013, 23(12), 620-633. doi: 10.1016/j.tcb.2013.07.006 PMID: 23958396
  34. Ghobrial, I.M.; Witzig, T.E.; Adjei, A.A. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin., 2005, 55(3), 178-194. doi: 10.3322/canjclin.55.3.178 PMID: 15890640
  35. Fulda, S.; Debatin, K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 2006, 25(34), 4798-4811. doi: 10.1038/sj.onc.1209608 PMID: 16892092
  36. Zhang, X.A.; Zhang, S.; Yin, Q.; Zhang, J. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway. Pharmacogn. Mag., 2015, 11(42), 404-409. doi: 10.4103/0973-1296.153096 PMID: 25829782
  37. Teekaraman, D.; Elayapillai, S.P.; Viswanathan, M.P.; Jagadeesan, A. Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1 cell line. Chem. Biol. Interact., 2019, 300, 91-100. doi: 10.1016/j.cbi.2019.01.008 PMID: 30639267
  38. Shang, H.S.; Lu, H.F.; Lee, C.H.; Chiang, H.S.; Chu, Y.L.; Chen, A.; Lin, Y.F.; Chung, J.G. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. Environ. Toxicol., 2018, 33(11), 1168-1181. doi: 10.1002/tox.22623 PMID: 30152185
  39. Psahoulia, F.H.; Drosopoulos, K.G.; Doubravska, L.; Andera, L.; Pintzas, A. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol. Cancer Ther., 2007, 6(9), 2591-2599. doi: 10.1158/1535-7163.MCT-07-0001 PMID: 17876056
  40. Yi, L.; Zongyuan, Y.; Cheng, G.; Lingyun, Z.; GuiLian, Y.; Wei, G. Quercetin enhances apoptotic effect of tumor necrosis factor related apoptosis inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer-binding protein homologous protein (CHOP)-death receptor 5 pathway. Cancer Sci., 2014, 105(5), 520-527. doi: 10.1111/cas.12395 PMID: 24612139
  41. Jung, Y.H.; Heo, J.; Lee, Y.J.; Kwon, T.K.; Kim, Y.H. Quercetin enhances TRAIL-induced apoptosis in prostate cancer cells via increased protein stability of death receptor 5. Life Sci., 2010, 86(9-10), 351-357. doi: 10.1016/j.lfs.2010.01.008 PMID: 20096292
  42. Tummala, R.; Lou, W.; Gao, A.C.; Nadiminty, N. Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells. Mol. Cancer Ther., 2017, 16(12), 2770-2779. doi: 10.1158/1535-7163.MCT-17-0030 PMID: 28729398
  43. Wong, M.L.H.; Prawira, A.; Kaye, A.H.; Hovens, C.M. Tumour angiogenesis: Its mechanism and therapeutic implications in malignant gliomas. J. Clin. Neurosci., 2009, 16(9), 1119-1130. doi: 10.1016/j.jocn.2009.02.009 PMID: 19556134
  44. Adams, R.H.; Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol., 2007, 8(6), 464-478. doi: 10.1038/nrm2183 PMID: 17522591
  45. Kashyap, D.; Mittal, S.; Sak, K.; Singhal, P.; Tuli, H.S. Molecular mechanisms of action of quercetin in cancer: Recent advances. Tumour Biol., 2016, 37(10), 12927-12939. doi: 10.1007/s13277-016-5184-x PMID: 27448306
  46. Tang, S.M.; Deng, X.T.; Zhou, J.; Li, Q.P.; Ge, X.X.; Miao, L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother., 2020, 121, 109604. doi: 10.1016/j.biopha.2019.109604 PMID: 31733570
  47. Klagsbrun, M.; Moses, M.A. Molecular angiogenesis. Chem. Biol., 1999, 6(8), R217-R224. doi: 10.1016/S1074-5521(99)80081-7 PMID: 10421764
  48. Liu, Y.; Tang, Z.G.; Yang, J.Q.; Zhou, Y.; Meng, L.H.; Wang, H.; Li, C.L. Low concentration of quercetin antagonizes the invasion and angiogenesis of human glioblastoma U251 cells. OncoTargets Ther., 2017, 10, 4023-4028. doi: 10.2147/OTT.S136821 PMID: 28860810
  49. Zhao, X.; Wang, Q.; Yang, S.; Chen, C.; Li, X.; Liu, J.; Zou, Z.; Cai, D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur. J. Pharmacol., 2016, 781, 60-68. doi: 10.1016/j.ejphar.2016.03.063 PMID: 27041643
  50. Pratheeshkumar, P.; Budhraja, A.; Son, Y.-O.; Wang, X.; Zhang, Z.; Ding, S. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One, 2012, 7(10), e47516.
  51. Liu, Y.; Li, C.L.; Xu, Q.Q.; Cheng, D.; Liu, K.D.; Sun, Z.Q. Quercetin inhibits invasion and angiogenesis of esophageal cancer cells. Pathol. Res. Pract., 2021, 222, 153455. doi: 10.1016/j.prp.2021.153455 PMID: 33962176
  52. Kee, J.Y.; Han, Y.H.; Kim, D.S.; Mun, J.G.; Park, J.; Jeong, M.Y.; Um, J.Y.; Hong, S.H. Inhibitory effect of quercetin on colorectal lung metastasis through inducing apoptosis, and suppression of metastatic ability. Phytomedicine, 2016, 23(13), 1680-1690. doi: 10.1016/j.phymed.2016.09.011 PMID: 27823633
  53. Chang, J.H.; Lai, S.L.; Chen, W.S.; Hung, W.Y.; Chow, J.M.; Hsiao, M.; Lee, W.J.; Chien, M.H. Quercetin suppresses the metastatic ability of lung cancer through inhibiting Snail-dependent Akt activation and Snail-independent ADAM9 expression pathways. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(10), 1746-1758. doi: 10.1016/j.bbamcr.2017.06.017 PMID: 28648644
  54. García-Prat, L.; Martínez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodríguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; Sandri, M.; Muñoz-Cánoves, P. Autophagy maintains stemness by preventing senescence. Nature, 2016, 529(7584), 37-42. doi: 10.1038/nature16187 PMID: 26738589
  55. Mulcahy Levy, J.M.; Thorburn, A. Autophagy in cancer: Moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ., 2020, 27(3), 843-857. doi: 10.1038/s41418-019-0474-7 PMID: 31836831
  56. Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis, 2013, 4(10), 838. doi: 10.1038/cddis.2013.350
  57. Marinković, M.; Šprung, M.; Buljubašić, M.; Novak, I. Autophagy modulation in cancer: Current knowledge on action and therapy. Oxid. Med. Cell Longev., 2018, 2018, 8023821. doi: 10.1155/2018/8023821
  58. Bhagya, N.; Chandrashekar, K.R. Autophagy and cancer: Can tetrandrine be a potent anticancer drug in the near future? Biomed. Pharmacother., 2022, 148, 112727. doi: 10.1016/j.biopha.2022.112727 PMID: 35219119
  59. Wang, K.; Liu, R.; Li, J.; Mao, J.; Lei, Y.; Wu, J.; Zeng, J.; Zhang, T.; Wu, H.; Chen, L.; Huang, C.; Wei, Y. Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy, 2011, 7(9), 966-978. doi: 10.4161/auto.7.9.15863 PMID: 21610320
  60. Chang, J.L.; Chow, J.M.; Chang, J.H.; Wen, Y.C.; Lin, Y.W.; Yang, S.F.; Lee, W.J.; Chien, M.H. Quercetin simultaneously induces G0 /G1 -phase arrest and caspase-mediated crosstalk between apoptosis and autophagy in human leukemia HL-60 cells. Environ. Toxicol., 2017, 32(7), 1857-1868. doi: 10.1002/tox.22408 PMID: 28251795
  61. Luo, C.; Liu, Y.; Wang, P.; Song, C.; Wang, K.; Dai, L.; Zhang, J.; Ye, H. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed. Pharmacother., 2016, 82, 595-605. doi: 10.1016/j.biopha.2016.05.029 PMID: 27470402
  62. Wang, Y.; Zhang, W.; Lv, Q.; Zhang, J.; Zhu, D. The critical role of quercetin in autophagy and apoptosis in HeLa cells. Tumour Biol., 2016, 37(1), 925-929. doi: 10.1007/s13277-015-3890-4 PMID: 26260273
  63. Jia, L.; Huang, S.; Yin, X.; Zan, Y.; Guo, Y.; Han, L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci., 2018, 208, 123-130. doi: 10.1016/j.lfs.2018.07.027 PMID: 30025823
  64. Lee, P.I.; Li, J.X. Evolution of Oral Controlled Release Dosage Forms. In: Oral Controlled Release Formulation Design and Drug Delivery: Theory to Practice Wiley: Hoboken, New Jersey; , 2010; pp. 21-31. doi: 10.1002/9780470640487.ch2
  65. Yun, Y.H.; Lee, B.K.; Park, K. Controlled Drug Delivery: Historical perspective for the next generation. J. Control. Release, 2015, 219, 2-7. doi: 10.1016/j.jconrel.2015.10.005 PMID: 26456749
  66. Ye, M.; Kim, S.; Park, K. Issues in long-term protein delivery using biodegradable microparticles. J. Control. Release, 2010, 146(2), 241-260. doi: 10.1016/j.jconrel.2010.05.011 PMID: 20493221
  67. Lee, B.K.; Yun, Y.H.; Park, K. Smart nanoparticles for drug delivery: Boundaries and opportunities. Chem. Eng. Sci., 2015, 125, 158-164. doi: 10.1016/j.ces.2014.06.042 PMID: 25684780
  68. Park, K. Controlled drug delivery systems: Past forward and future back. J. Control. Release, 2014, 190, 3-8. doi: 10.1016/j.jconrel.2014.03.054 PMID: 24794901
  69. Dadwal, A.; Baldi, A.; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(S2), 295-305. doi: 10.1080/21691401.2018.1457039
  70. Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett., 2017, 190, 64-83. doi: 10.1016/j.imlet.2017.07.015 PMID: 28760499
  71. Sultana, A.; Zare, M.; Thomas, V.; Kumar, T.S.; Ramakrishna, S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Med. Drug Discovery, 2022, 15, 100134.
  72. Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm., 2019, 570, 118642. doi: 10.1016/j.ijpharm.2019.118642 PMID: 31446024
  73. Chen, X.; Yin, O.Q.P.; Zuo, Z.; Chow, M.S.S. Pharmacokinetics and modeling of quercetin and metabolites. Pharm. Res., 2005, 22(6), 892-901. doi: 10.1007/s11095-005-4584-1 PMID: 15948033
  74. Chabane, M.N.; Ahmad, A.A.; Peluso, J.; Muller, C.D.; Ubeaud-Séquier, G. Quercetin and naringenin transport across human intestinal Caco-2 cells. J. Pharm. Pharmacol., 2010, 61(11), 1473-1483. doi: 10.1211/jpp.61.11.0006 PMID: 19903372
  75. Burak, C.; Brüll, V.; Langguth, P.; Zimmermann, B.F.; Stoffel-Wagner, B.; Sausen, U.; Stehle, P.; Wolffram, S.; Egert, S. Higher plasma quercetin levels following oral administration of an onion skin extract compared with pure quercetin dihydrate in humans. Eur. J. Nutr., 2017, 56(1), 343-353. doi: 10.1007/s00394-015-1084-x PMID: 26482244
  76. Guo, Y.; Bruno, R.S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem., 2015, 26(3), 201-210. doi: 10.1016/j.jnutbio.2014.10.008 PMID: 25468612
  77. Sharma, G.; Park, J.; Sharma, A.R.; Jung, J.S.; Kim, H.; Chakraborty, C.; Song, D.K.; Lee, S.S.; Nam, J.S. Methoxy poly(ethylene glycol)-poly(lactide) nanoparticles encapsulating quercetin act as an effective anticancer agent by inducing apoptosis in breast cancer. Pharm. Res., 2015, 32(2), 723-735. doi: 10.1007/s11095-014-1504-2 PMID: 25186442
  78. Chen, L-C.; Chen, Y-C.; Su, C-Y.; Hong, C-S.; Ho, H-O.; Sheu, M-T. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study. Int. J. Nanomedicine, 2016, 11, 1557-1566. PMID: 27143878
  79. Mero, A.; Campisi, M. Hyaluronic acid bioconjugates for the delivery of bioactive molecules. Polymers (Basel), 2014, 6(2), 346-369. doi: 10.3390/polym6020346
  80. De Leo, V.; Maurelli, A.M.; Giotta, L.; Catucci, L. Liposomes containing nanoparticles: preparation and applications. Colloids Surf. B Biointerfaces, 2022, 218, 112737. doi: 10.1016/j.colsurfb.2022.112737 PMID: 35933888
  81. Dymek, M.; Sikora, E. Liposomes as biocompatible and smart delivery systems – the current state. Adv. Colloid Interface Sci., 2022, 309, 102757. doi: 10.1016/j.cis.2022.102757 PMID: 36152374
  82. Aguilar-Pérez, K.M.; Avilés-Castrillo, J.I.; Medina, D.I.; Parra-Saldivar, R.; Iqbal, H.M.N. Insight into nanoliposomes as smart nanocarriers for greening the twenty-first century biomedical settings. Front. Bioeng. Biotechnol., 2020, 8, 579536. doi: 10.3389/fbioe.2020.579536 PMID: 33384988
  83. Hynynen, K. Hyperthermia-induced drug delivery in humans. Nat. Biomed. Eng., 2018, 2(9), 637-639. doi: 10.1038/s41551-018-0297-8 PMID: 31015680
  84. Deng, W.; Chen, W.; Clement, S.; Guller, A.; Zhao, Z.; Engel, A.; Goldys, E.M. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nat. Commun., 2018, 9(1), 2713. doi: 10.1038/s41467-018-05118-3 PMID: 30006596
  85. Hao, J.; Guo, B.; Yu, S.; Zhang, W.; Zhang, D.; Wang, J.; Wang, Y. Encapsulation of the flavonoid quercetin with chitosan-coated nano-liposomes. Lebensm. Wiss. Technol., 2017, 85, 37-44. doi: 10.1016/j.lwt.2017.06.048
  86. Li, J.; Shi, M.; Ma, B.; Niu, R.; Zhang, H.; Kun, L. Antitumor activity and safety evaluation of nanaparticle-based delivery of quercetin through intravenous administration in mice. Mater. Sci. Eng. C, 2017, 77, 803-810. doi: 10.1016/j.msec.2017.03.191 PMID: 28532095
  87. Jiang, M.; Zhang, E.; Liang, Z.; Zhao, Y.; Zhang, S.; Xu, H.; Wang, H.; Shu, X.; Kang, X.; Sun, L.; Zhen, Y. Liposome-based co-delivery of 7-O-geranyl-quercetin and IGF-1R siRNA for the synergistic treatment of non-small cell lung cancer. J. Drug Deliv. Sci. Technol., 2019, 54, 101316. doi: 10.1016/j.jddst.2019.101316
  88. Yu, J.; Chen, H.; Jiang, L.; Wang, J.; Dai, J.; Wang, J. Codelivery of adriamycin and P-gp inhibitor quercetin using PEGylated liposomes to overcome cancer drug resistance. J. Pharm. Sci., 2019, 108(5), 1788-1799. doi: 10.1016/j.xphs.2018.12.016 PMID: 30610857
  89. Patel, G.; Thakur, N.S.; Kushwah, V.; Patil, M.D.; Nile, S.H.; Jain, S.; Banerjee, U.C.; Kai, G. Liposomal delivery of mycophenolic acid with quercetin for improved breast cancer therapy in SD rats. Front. Bioeng. Biotechnol., 2020, 8, 631. doi: 10.3389/fbioe.2020.00631 PMID: 32612988
  90. Cai, H.; Tan, P.; Chen, X.; Kopytynski, M.; Pan, D.; Zheng, X.; Gu, L.; Gong, Q.; Tian, X.; Gu, Z.; Zhang, H.; Chen, R.; Luo, K. Stimuli sensitive linear–dendritic block copolymer–drug prodrug as a nanoplatform for tumor combination therapy. Adv. Mater., 2022, 34(8), 2108049. doi: 10.1002/adma.202108049 PMID: 34875724
  91. Li, Z.; Cai, H.; Li, Z.; Ren, L.; Ma, X.; Zhu, H.; Gong, Q.; Zhang, H.; Gu, Z.; Luo, K. A tumor cell membrane-coated self-amplified nanosystem as a nanovaccine to boost the therapeutic effect of anti-PD-L1 antibody. Bioact. Mater., 2023, 21, 299-312. doi: 10.1016/j.bioactmat.2022.08.028 PMID: 36157245
  92. Xiao, X.; Cai, H.; Huang, Q.; Wang, B.; Wang, X.; Luo, Q.; Li, Y.; Zhang, H.; Gong, Q.; Ma, X.; Gu, Z.; Luo, K. Polymeric dual-modal imaging nanoprobe with two-photon aggregation-induced emission for fluorescence imaging and gadolinium-chelation for magnetic resonance imaging. Bioact. Mater., 2023, 19, 538-549. doi: 10.1016/j.bioactmat.2022.04.026 PMID: 35600977
  93. Hemati, M.; Haghiralsadat, F.; Yazdian, F.; Jafari, F.; Moradi, A.; Malekpour-Dehkordi, Z. Development and characterization of a novel cationic PEGylated niosome-encapsulated forms of doxorubicin, quercetin and siRNA for the treatment of cancer by using combination therapy. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1295-1311. doi: 10.1080/21691401.2018.1489271 PMID: 30033768
  94. Aditya, N.P.; Ko, S. Solid lipid nanoparticles (SLNs): Delivery vehicles for food bioactives. RSC Advances, 2015, 5(39), 30902-30911. doi: 10.1039/C4RA17127F
  95. Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm., 2017, 6, 37-56. doi: 10.1016/j.scp.2017.07.002
  96. Nasirizadeh, S.; Malaekeh-Nikouei, B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J. Drug Deliv. Sci. Technol., 2020, 55, 101458. doi: 10.1016/j.jddst.2019.101458
  97. da Silva Santos, V.; Badan Ribeiro, A.P.; Andrade Santana, M.H. Solid lipid nanoparticles as carriers for lipophilic compounds for applications in foods. Food Res. Int., 2019, 122, 610-626. doi: 10.1016/j.foodres.2019.01.032 PMID: 31229120
  98. Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Siva Kumar, N.; Vekariya, R.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Advances, 2020, 10(45), 26777-26791. doi: 10.1039/D0RA03491F PMID: 35515778
  99. Hu, K.; Miao, L.; Goodwin, T.J.; Li, J.; Liu, Q.; Huang, L. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano, 2017, 11(5), 4916-4925. doi: 10.1021/acsnano.7b01522 PMID: 28414916
  100. Hu, X.; Ning, P.; Zhang, R.; Yang, Y.; Li, L.; Xiao, X. Anticancer effect of folic acid modified tumor-targeting quercetin lipid nanoparticle. Int. J. Clin. Exp. Med., 2016, 9(9), 17195-17202.
  101. Weiss, J.; Decker, E.A.; McClements, D.J.; Kristbergsson, K.; Helgason, T.; Awad, T. Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys., 2008, 3(2), 146-154. doi: 10.1007/s11483-008-9065-8
  102. Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177. doi: 10.1016/S0939-6411(00)00087-4 PMID: 10840199
  103. Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128. doi: 10.1016/S0378-5173(02)00180-1 PMID: 12176234
  104. Huang, Z.; Hua, S.; Yang, Y.; Fang, J. Development and evaluation of lipid nanoparticles for camptothecin delivery: A comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion. Acta Pharmacol. Sin., 2008, 29(9), 1094-1102. doi: 10.1111/j.1745-7254.2008.00829.x PMID: 18718178
  105. Zhu, B.; Yu, L.; Yue, Q. Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy. Biomed. Pharmacother., 2017, 91, 287-294. doi: 10.1016/j.biopha.2017.02.112 PMID: 28463792
  106. Kumar, R.; Choudhary, D.K.; Debnath, M. Development of BSA conjugated on modified surface of quercetin- loaded lipid nanocarriers for breast cancer treatment. Mater. Res. Express, 2020, 7(1), 015411. doi: 10.1088/2053-1591/ab6774
  107. Ghosh, S.; Mishra, P.; Dabke, A.; Pathak, A.; Bhowmick, S.; Misra, A. Targeting Approaches Using Polymeric Nanocarriers. In: Applications of Polymers in Drug Delivery; Elsevier: Amsterdam, 2021; pp. 393-421. doi: 10.1016/B978-0-12-819659-5.00014-8
  108. Prabhu, R.H.; Patravale, V.B.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomedicine, 2015, 10, 1001-1018. PMID: 25678788
  109. Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer–drug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294. doi: 10.1038/s41573-018-0005-0 PMID: 30542076
  110. Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer- targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191. doi: 10.3109/1061186X.2015.1051049 PMID: 26061298
  111. Alibolandi, M.; Ramezani, M.; Abnous, K.; Sadeghi, F.; Hadizadeh, F. Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs. J. Nanopart. Res., 2015, 17(2), 76. doi: 10.1007/s11051-015-2878-8
  112. Yokoyama, M. Polymeric micelles as drug carriers: Their lights and shadows. J. Drug Target., 2014, 22(7), 576-583. doi: 10.3109/1061186X.2014.934688 PMID: 25012065
  113. Chaudhuri, A.; Ramesh, K.; Kumar, D.N.; Dehari, D.; Singh, S.; Kumar, D.; Agrawal, A.K. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J. Drug Deliv. Sci. Technol., 2022, 77, 103886. doi: 10.1016/j.jddst.2022.103886
  114. Gao, X.; Wang, B.; Wei, X.; Men, K.; Zheng, F.; Zhou, Y.; Zheng, Y.; Gou, M.; Huang, M.; Guo, G.; Huang, N.; Qian, Z.; Wei, Y. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale, 2012, 4(22), 7021-7030. doi: 10.1039/c2nr32181e PMID: 23044718
  115. Fatease, A.A.; Shah, V.; Nguyen, D.X.; Cote, B.; LeBlanc, N.; Rao, D.A.; Alani, A.W.G. Chemosensitization and mitigation of Adriamycin-induced cardiotoxicity using combinational polymeric micelles for co-delivery of quercetin/resveratrol and resveratrol/curcumin in ovarian cancer. Nanomedicine, 2019, 19, 39-48. doi: 10.1016/j.nano.2019.03.011 PMID: 31022465
  116. Qureshi, W.A.; Zhao, R.; Wang, H.; Ji, T.; Ding, Y.; Ihsan, A.; Mujeeb, A.; Nie, G.; Zhao, Y. Co-delivery of doxorubicin and quercetin via mPEG–PLGA copolymer assembly for synergistic anti-tumor efficacy and reducing cardio- toxicity. Sci. Bull. (Beijing), 2016, 61(21), 1689-1698. doi: 10.1007/s11434-016-1182-z
  117. Ramasamy, T.; Ruttala, H.B.; Chitrapriya, N.; Poudal, B.K.; Choi, J.Y.; Kim, S.T.; Youn, Y.S.; Ku, S.K.; Choi, H.G.; Yong, C.S.; Kim, J.O. Engineering of cell microenvironment-responsive polypeptide nanovehicle co-encapsulating a synergistic combination of small molecules for effective chemotherapy in solid tumors. Acta Biomater., 2017, 48, 131-143. doi: 10.1016/j.actbio.2016.10.034 PMID: 27794477
  118. Zhang, X.; Huang, Y.; Song, H.; Canup, B.S.B.; Gou, S.; She, Z.; Dai, F.; Ke, B.; Xiao, B. Inhibition of growth and lung metastasis of breast cancer by tumor-homing triple-bioresponsive nanotherapeutics. J. Control. Release, 2020, 328, 454-469. doi: 10.1016/j.jconrel.2020.08.066 PMID: 32890553
  119. Wang, Y.; Yu, H.; Wang, S.; Gai, C.; Cui, X.; Xu, Z.; Li, W.; Zhang, W. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel. Mater. Sci. Eng. C, 2021, 119, 111442. doi: 10.1016/j.msec.2020.111442 PMID: 33321583
  120. Xiong, Q.; Wang, Y.; Wan, J.; Yuan, P.; Chen, H.; Zhang, L. Facile preparation of hyaluronic acid-based quercetin nanoformulation for targeted tumor therapy. Int. J. Biol. Macromol., 2020, 147, 937-945. doi: 10.1016/j.ijbiomac.2019.10.060 PMID: 31730969
  121. Gu, L.Q.; Cui, P.F.; Xing, L.; He, Y.J.; Chang, X.; Zhou, T.J.; Liu, Y.; Li, L.; Jiang, H.L. An energy-blocking nanoparticle decorated with anti-VEGF antibody to reverse chemotherapeutic drug resistance. RSC Advances, 2019, 9(21), 12110-12123. doi: 10.1039/C9RA01356C PMID: 35548379
  122. Ersoz, M.; Erdemir, A.; Derman, S.; Arasoglu, T.; Mansuroglu, B. Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells. Pharm. Dev. Technol., 2020, 25(6), 757-766. doi: 10.1080/10837450.2020.1740933 PMID: 32192406
  123. Tian, F.; Dahmani, F.Z.; Qiao, J.; Ni, J.; Xiong, H.; Liu, T.; Zhou, J.; Yao, J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater., 2018, 75, 398-412. doi: 10.1016/j.actbio.2018.05.050 PMID: 29874597
  124. Mu, Y.; Fu, Y.; Li, J.; Yu, X.; Li, Y.; Wang, Y.; Wu, X.; Zhang, K.; Kong, M.; Feng, C.; Chen, X. Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohydr. Polym., 2019, 203, 10-18. doi: 10.1016/j.carbpol.2018.09.020 PMID: 30318192
  125. Mu, Y.; Wu, G.; Su, C.; Dong, Y.; Zhang, K.; Li, J.; Sun, X.; Li, Y.; Chen, X.; Feng, C. pH-sensitive amphiphilic chitosan-quercetin conjugate for intracellular delivery of doxorubicin enhancement. Carbohydr. Polym., 2019, 223, 115072. doi: 10.1016/j.carbpol.2019.115072 PMID: 31427010
  126. Zhang, J.; Shen, L.; Li, X.; Song, W.; Liu, Y.; Huang, L. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano, 2019, 13(11), 12511-12524. doi: 10.1021/acsnano.9b02875 PMID: 31664821
  127. Rezvani, M.; Mohammadnejad, J.; Narmani, A.; Bidaki, K. Synthesis and in vitro study of modified chitosan-polycaprolactam nanocomplex as delivery system. Int. J. Biol. Macromol., 2018, 113, 1287-1293. doi: 10.1016/j.ijbiomac.2018.02.141 PMID: 29481956
  128. Zamani, M.; Aghajanzadeh, M.; Rostamizadeh, K.; Kheiri Manjili, H.; Fridoni, M.; Danafar, H. In vivo study of poly (ethylene glycol)-poly (caprolactone)-modified folic acid nanocarriers as a pH responsive system for tumor-targeted co-delivery of tamoxifen and quercetin. J. Drug Deliv. Sci. Technol., 2019, 54, 101283. doi: 10.1016/j.jddst.2019.101283
  129. Zhou, L.; Shan, Y.; Hu, H.; Yu, B.; Cong, H. Synthesis and biomedical applications of dendrimers. Curr. Org. Chem., 2018, 22(6), 600-612. doi: 10.2174/1385272822666180129142809
  130. Yousefi, M.; Narmani, A.; Jafari, S.M. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv. Colloid Interface Sci., 2020, 278, 102125. doi: 10.1016/j.cis.2020.102125 PMID: 32109595
  131. Patel, P.; Patel, V.; Patel, P.M. Synthetic strategy of dendrimers: A review. J. Indian Chem. Soc., 2022, 99(7), 100514. doi: 10.1016/j.jics.2022.100514
  132. Choi, J.; Moquin, A.; Bomal, E.; Na, L.; Maysinger, D.; Kakkar, A. Telodendrimers for physical encapsulation and covalent linking of individual or combined therapeutics. Mol. Pharm., 2017, 14(8), 2607-2615. doi: 10.1021/acs.molpharmaceut.7b00019 PMID: 28520445
  133. Eivazzadeh-Keihan, R.; Maleki, A.; de la Guardia, M.; Bani, M.S.; Chenab, K.K.; Pashazadeh-Panahi, P.; Baradaran, B.; Mokhtarzadeh, A.; Hamblin, M.R. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J. Adv. Res., 2019, 18, 185-201. doi: 10.1016/j.jare.2019.03.011 PMID: 31032119
  134. Bianco, A. Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin. Drug Deliv., 2004, 1(1), 57-65. doi: 10.1517/17425247.1.1.57 PMID: 16296720
  135. Deepa, C.; Rajeshkumar, L.; Ramesh, M. Preparation, synthesis, properties and characterization of graphene-based 2D nano-materials for biosensors and bioelectronics. J. Mater. Res. Technol., 2022, 19, 2657-2694. doi: 10.1016/j.jmrt.2022.06.023
  136. Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J.P.; Muller, S.; Prato, M.; Bianco, A. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol., 2007, 2(2), 108-113. doi: 10.1038/nnano.2006.209 PMID: 18654229
  137. Kumar, M.; Sharma, G.; Misra, C.; Kumar, R.; Singh, B.; Katare, O.P.; Raza, K. N-desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: A synergistic approach to overcome MDR in cancer cells. Mater. Sci. Eng. C, 2018, 89, 274-282. doi: 10.1016/j.msec.2018.03.033 PMID: 29752099
  138. Badea, N.; Craciun, M.M.; Dragomir, A.S.; Balas, M.; Dinischiotu, A.; Nistor, C.; Gavan, C.; Ionita, D. Systems based on carbon nanotubes with potential in cancer therapy. Mater. Chem. Phys., 2020, 241, 122435. doi: 10.1016/j.matchemphys.2019.122435
  139. Gismondi, A.; Reina, G.; Orlanducci, S.; Mizzoni, F.; Gay, S.; Terranova, M.L.; Canini, A. Nanodiamonds coupled with plant bioactive metabolites: A nanotech approach for cancer therapy. Biomaterials, 2015, 38, 22-35. doi: 10.1016/j.biomaterials.2014.10.057 PMID: 25457980
  140. Tiwari, H.; Karki, N.; Pal, M.; Basak, S.; Verma, R.K.; Bal, R.; Kandpal, N.D.; Bisht, G.; Sahoo, N.G. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: The synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surf. B Biointerfaces, 2019, 178, 452-459. doi: 10.1016/j.colsurfb.2019.03.037 PMID: 30921680
  141. Abdallah, B.; Elhissi, A.; Ahmed, W.; Najlah, M. Chapter 16 - Carbon nanotubes drug delivery system for cancer treatment. Adv. Med. Surgic. Eng., 2020, 313-332.
  142. Huang, Y.; Li, P.; Zhao, R.; Zhao, L.; Liu, J.; Peng, S.; Fu, X.; Wang, X.; Luo, R.; Wang, R.; Zhang, Z. Silica nanoparticles: Biomedical applications and toxicity. Biomed. Pharmacother., 2022, 151, 113053. doi: 10.1016/j.biopha.2022.113053 PMID: 35594717
  143. Siddiqui, B.; Rehman, A.; Haq, I.; Al-Dossary, A.A.; Elaissari, A.; Ahmed, N. Exploiting recent trends for the synthesis and surface functionalization of mesoporous silica nanoparticles towards biomedical applications. Int. J. Pharm. X, 2022, 4, 100116. doi: 10.1016/j.ijpx.2022.100116 PMID: 35509288
  144. Murugan, C.; Rayappan, K.; Thangam, R.; Bhanumathi, R.; Shanthi, K.; Vivek, R.; Thirumurugan, R.; Bhattacharyya, A.; Sivasubramanian, S.; Gunasekaran, P.; Kannan, S. Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Sci. Rep., 2016, 6(1), 34053. doi: 10.1038/srep34053 PMID: 28442746
  145. Sarkar, A.; Ghosh, S.; Chowdhury, S.; Pandey, B.; Sil, P.C. Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim. Biophys. Acta, Gen. Subj., 2016, 1860(10), 2065-2075. doi: 10.1016/j.bbagen.2016.07.001 PMID: 27392941
  146. Mishra, S.; Manna, K.; Kayal, U.; Saha, M.; Chatterjee, S.; Chandra, D.; Hara, M.; Datta, S.; Bhaumik, A.; Das Saha, K. Folic acid-conjugated magnetic mesoporous silica nanoparticles loaded with quercetin: A theranostic approach for cancer management. RSC Advances, 2020, 10(39), 23148-23164. doi: 10.1039/D0RA00664E PMID: 35520307
  147. Evans, E.R.; Bugga, P.; Asthana, V.; Drezek, R. Metallic nanoparticles for cancer immunotherapy. Mater. Today, 2018, 21(6), 673-685. doi: 10.1016/j.mattod.2017.11.022 PMID: 30197553
  148. El-Sayed, M.A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res., 2001, 34(4), 257-264. doi: 10.1021/ar960016n PMID: 11308299
  149. Khursheed, R.; Dua, K.; Vishwas, S.; Gulati, M.; Jha, N.K.; Aldhafeeri, G.M.; Alanazi, F.G.; Goh, B.H.; Gupta, G.; Paudel, K.R.; Hansbro, P.M.; Chellappan, D.K.; Singh, S.K. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Biomed. Pharmacother., 2022, 150, 112951. doi: 10.1016/j.biopha.2022.112951 PMID: 35447546
  150. Bishayee, K.; Khuda-Bukhsh, A.R.; Huh, S.O. PLGA-loaded gold-nanoparticles precipitated with quercetin downregulate HDAC-Akt activities controlling proliferation and activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol. Cells, 2015, 38(6), 518-527. doi: 10.14348/molcells.2015.2339 PMID: 25947292
  151. Balakrishnan, S.; Mukherjee, S.; Das, S.; Bhat, F.A.; Raja Singh, P.; Patra, C.R.; Arunakaran, J. Gold nanoparticles- conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem. Funct., 2017, 35(4), 217-231. doi: 10.1002/cbf.3266 PMID: 28498520
  152. Balakrishnan, S.; Bhat, F.A.; Raja Singh, P.; Mukherjee, S.; Elumalai, P.; Das, S.; Patra, C.R.; Arunakaran, J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif., 2016, 49(6), 678-697. doi: 10.1111/cpr.12296 PMID: 27641938
  153. Daglioglu, C. Enhancing tumor cell response to multidrug resistance with pH-sensitive quercetin and doxorubicin conjugated multifunctional nanoparticles. Colloids Surf. B Biointerfaces, 2017, 156, 175-185. doi: 10.1016/j.colsurfb.2017.05.012 PMID: 28528134
  154. Mashhadi Malekzadeh, A.; Ramazani, A.; Tabatabaei Rezaei, S.J.; Niknejad, H. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy. J. Colloid Interface Sci., 2017, 490, 64-73. doi: 10.1016/j.jcis.2016.11.014 PMID: 27870961
  155. Akal, Z.Ü.; Alpsoy, L.; Baykal, A. Biomedical applications of SPION@APTES@PEG-folic acid@carboxylated quercetin nanodrug on various cancer cells. Appl. Surf. Sci., 2016, 378, 572-581. doi: 10.1016/j.apsusc.2016.03.217
  156. Sathishkumar, P.; Li, Z.; Govindan, R.; Jayakumar, R.; Wang, C.; Long Gu, F. Zinc oxide-quercetin nanocomposite as a smart nano-drug delivery system: Molecular-level interaction studies. Appl. Surf. Sci., 2021, 536, 147741. doi: 10.1016/j.apsusc.2020.147741
  157. George, D.; Maheswari, P.U.; Begum, K.M.M.S. Chitosan-cellulose hydrogel conjugated with L-histidine and zinc oxide nanoparticles for sustained drug delivery: Kinetics and in-vitro biological studies. Carbohydr. Polym., 2020, 236, 116101. doi: 10.1016/j.carbpol.2020.116101 PMID: 32172900
  158. Sadhukhan, P.; Kundu, M.; Chatterjee, S.; Ghosh, N.; Manna, P.; Das, J.; Sil, P.C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater. Sci. Eng. C, 2019, 100, 129-140. doi: 10.1016/j.msec.2019.02.096 PMID: 30948047
  159. Cheng, H.W.; Chiang, C.S.; Ho, H.Y.; Chou, S.H.; Lai, Y.H.; Shyu, W.C.; Chen, S.Y. Dextran-modified Quercetin-Cu(II)/hyaluronic acid nanomedicine with natural poly(ADP-ribose) polymerase inhibitor and dual targeting for programmed synthetic lethal therapy in triple-negative breast cancer. J. Control. Release, 2021, 329, 136-147. doi: 10.1016/j.jconrel.2020.11.061 PMID: 33278482
  160. Ponraj, T.; Vivek, R.; Paulpandi, M.; Rejeeth, C.; Nipun Babu, V.; Vimala, K.; Anand, K.; Sivaselvam, S.; Vasanthakumar, A.; Ponpandian, N.; Kannan, S. Mitochondrial dysfunction-induced apoptosis in breast carcinoma cells through a pH-dependent intracellular quercetin NDDS of PVPylated-TiO 2 NPs. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(21), 3555-3570. doi: 10.1039/C8TB00769A PMID: 32254451
  161. Klein, S.; Luchs, T.; Leng, A.; Distel, L.; Neuhuber, W.; Hirsch, A. Encapsulation of hydrophobic drugs in shell-by-shell coated nanoparticles for radio-and chemotherapy-An in vitro study. Bioengineering (Basel), 2020, 7(4), 126. doi: 10.3390/bioengineering7040126 PMID: 33053776
  162. Zhong, Y.; Zou, Y.; Liu, L.; Li, R.; Xue, F.; Yi, T. pH-responsive Ag2S nanodots loaded with heat shock protein 70 inhibitor for photoacoustic imaging-guided photothermal cancer therapy. Acta Biomater., 2020, 115, 358-370. doi: 10.1016/j.actbio.2020.08.007 PMID: 32798720
  163. Bose, P.; Priyam, A.; Kar, R.; Pattanayak, S.P. Quercetin loaded folate targeted plasmonic silver nanoparticles for light activated chemo-photothermal therapy of DMBA induced breast cancer in Sprague Dawley rats. RSC Advances, 2020, 10(53), 31961-31978. doi: 10.1039/D0RA05793B PMID: 35518142
  164. Ma, T.; Liu, Y.; Wu, Q.; Luo, L.; Cui, Y.; Wang, X.; Chen, X.; Tan, L.; Meng, X. Quercetin-modified metal–organic frameworks for dual sensitization of radiotherapy in tumor tissues by inhibiting the carbonic anhydrase IX. ACS Nano, 2019, 13(4), 4209-4219. doi: 10.1021/acsnano.8b09221 PMID: 30933559
  165. Chen, Z.; Guo, W.; Wu, Q.; Tan, L.; Ma, T.; Fu, C.; Yu, J.; Ren, X.; Wang, J.; Liang, P.; Meng, X. Tumor reoxygenation for enhanced combination of radiation therapy and microwave thermal therapy using oxygen generation in situ by CuO nanosuperparticles under microwave irradiation. Theranostics, 2020, 10(10), 4659-4675. doi: 10.7150/thno.42818 PMID: 32292521
  166. Rezaei-Sadabady, R.; Eidi, A.; Zarghami, N.; Barzegar, A. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 128-134. doi: 10.3109/21691401.2014.926456 PMID: 24959911
  167. Zhang, J.; Luo, Y.; Zhao, X.; Li, X.; Li, K.; Chen, D.; Qiao, M.; Hu, H.; Zhao, X. Co-delivery of doxorubicin and the traditional Chinese medicine quercetin using biotin–PEG 2000 –DSPE modified liposomes for the treatment of multidrug resistant breast cancer. RSC Advances, 2016, 6(114), 113173-113184. doi: 10.1039/C6RA24173E
  168. Patel, G.; Thakur, N.S.; Kushwah, V.; Patil, M.D.; Nile, S.H.; Jain, S.; Kai, G.; Banerjee, U.C. Mycophenolate co-administration with quercetin via lipid-polymer hybrid nanoparticles for enhanced breast cancer management. Nanomedicine, 2020, 24, 102147. doi: 10.1016/j.nano.2019.102147 PMID: 31884040
  169. Jain, A.S.; Shah, S.M.; Nagarsenker, M.S.; Nikam, Y.; Gude, R.P.; Steiniger, F.; Thamm, J.; Fahr, A. Lipid colloidal carriers for improvement of anticancer activity of orally delivered quercetin: formulation, characterization and establishing in vitro-in vivo advantage. J. Biomed. Nanotechnol., 2013, 9(7), 1230-1240. doi: 10.1166/jbn.2013.1636 PMID: 23909137
  170. Jain, A.K.; Thanki, K.; Jain, S. Novel self-nanoemulsifying formulation of quercetin: Implications of pro-oxidant activity on the anticancer efficacy. Nanomedicine, 2014, 10(5), e959-e969. doi: 10.1016/j.nano.2013.12.010 PMID: 24407148
  171. Samadi, A.; Pourmadadi, M.; Yazdian, F.; Rashedi, H.; Navaei-Nigjeh, M.; Eufrasio-da-silva, T. Ameliorating quercetin constraints in cancer therapy with pH-responsive agarose-polyvinylpyrrolidone -hydroxyapatite nanocomposite encapsulated in double nanoemulsion. Int. J. Biol. Macromol., 2021, 182, 11-25. doi: 10.1016/j.ijbiomac.2021.03.146 PMID: 33775763
  172. Wang, G.; Wang, J.; Luo, J.; Wang, L.; Chen, X.; Zhang, L.; Jiang, S. PEG2000-DPSE-coated quercetin nanoparticles remarkably enhanced anticancer effects through induced programed cell death on C6 glioma cells. J. Biomed. Mater. Res. A, 2013, 101(11), n/a. doi: 10.1002/jbm.a.34607 PMID: 23529952
  173. El-Gogary, R.I.; Rubio, N.; Wang, J.T.W.; Al-Jamal, W.T.; Bourgognon, M.; Kafa, H.; Naeem, M.; Klippstein, R.; Abbate, V.; Leroux, F.; Bals, S.; Van Tendeloo, G.; Kamel, A.O.; Awad, G.A.S.; Mortada, N.D.; Al-Jamal, K.T. Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano, 2014, 8(2), 1384-1401. doi: 10.1021/nn405155b PMID: 24397686
  174. Pang, X.; Lu, Z.; Du, H.; Yang, X.; Zhai, G. Hyaluronic acid-quercetin conjugate micelles: Synthesis, characterization, in vitro and in vivo evaluation. Colloids Surf. B Biointerfaces, 2014, 123, 778-786. doi: 10.1016/j.colsurfb.2014.10.025 PMID: 25454664
  175. Zafar, S.; Negi, L.M.; Verma, A.K.; Kumar, V.; Tyagi, A.; Singh, P.; Iqbal, Z.; Talegaonkar, S. Sterically stabilized polymeric nanoparticles with a combinatorial approach for multi drug resistant cancer: In vitro and in vivo investigations. Int. J. Pharm., 2014, 477(1-2), 454-468. doi: 10.1016/j.ijpharm.2014.10.061 PMID: 25445525
  176. David, K.I.; Jaidev, L.R.; Sethuraman, S.; Krishnan, U.M. Dual drug loaded chitosan nanoparticles-sugar-coated arsenal against pancreatic cancer. Colloids Surf. B Biointerfaces, 2015, 135, 689-698. doi: 10.1016/j.colsurfb.2015.08.038 PMID: 26340358
  177. Suksiriworapong, J.; Phoca, K.; Ngamsom, S.; Sripha, K.; Moongkarndi, P.; Junyaprasert, V.B. Comparison of poly(ε-caprolactone) chain lengths of poly(ε-caprolactone)- co-d-α-tocopheryl-poly(ethylene glycol) 1000 succinate nanoparticles for enhancement of quercetin delivery to SKBR3 breast cancer cells. Eur. J. Pharm. Biopharm., 2016, 101, 15-24. doi: 10.1016/j.ejpb.2016.01.008 PMID: 26802701
  178. Abd-Rabou, A.A.; Ahmed, H.H. CS-PEG decorated PLGA nano-prototype for delivery of bioactive compounds: A novel approach for induction of apoptosis in HepG2 cell line. Adv. Med. Sci., 2017, 62(2), 357-367. doi: 10.1016/j.advms.2017.01.003 PMID: 28521254
  179. Baksi, R.; Singh, D.P.; Borse, S.P.; Rana, R.; Sharma, V.; Nivsarkar, M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed. Pharmacother., 2018, 106, 1513-1526. doi: 10.1016/j.biopha.2018.07.106 PMID: 30119227
  180. Desale, J.P.; Swami, R.; Kushwah, V.; Katiyar, S.S.; Jain, S. Chemosensitizer and docetaxel-loaded albumin nanoparticle: Overcoming drug resistance and improving therapeutic efficacy. Nanomedicine, 2018, 13(21), 2759-2776. doi: 10.2217/nnm-2018-0206 PMID: 30398388
  181. Halder, A.; Mukherjee, P.; Ghosh, S.; Mandal, S.; Chatterji, U.; Mukherjee, A. Smart PLGA nanoparticles loaded with Quercetin: Cellular uptake and in vitro anticancer study. Mater. Today Proc., 2018, 5(3), 9698-9705. doi: 10.1016/j.matpr.2017.10.156
  182. Islami, M.; Zarrabi, A.; Tada, S.; Kawamoto, M.; Isoshima, T.; Ito, Y. Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide. Int. J. Nanomedicine, 2018, 13, 6059-6071. doi: 10.2147/IJN.S178374 PMID: 30323593
  183. Oliver, S.; Yee, E.; Kavallaris, M.; Vittorio, O.; Boyer, C. Water soluble antioxidant dextran–quercetin conjugate with potential anticancer properties. Macromol. Biosci., 2018, 18(4), 1700239. doi: 10.1002/mabi.201700239 PMID: 29411934
  184. Sahiner, N.; Sagbas, S.; Sahiner, M.; Aktas, N. Degradable natural phenolic based particles with micro-and nano-size range. Recent Pat. Mater. Sci., 2018, 11(1), 33-40. doi: 10.2174/1874464811666180724124614
  185. Sunoqrot, S.; Al-Shalabi, E.; Messersmith, P.B. Facile synthesis and surface modification of bioinspired nanoparticles from quercetin for drug delivery. Biomater. Sci., 2018, 6(10), 2656-2666. doi: 10.1039/C8BM00587G PMID: 30140818
  186. Sunoqrot, S.; Abujamous, L. pH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. J. Drug Deliv. Sci. Technol., 2019, 52, 670-676. doi: 10.1016/j.jddst.2019.05.035
  187. Wang, B.; Zhang, W.; Zhou, X.; Liu, M.; Hou, X.; Cheng, Z.; Chen, D. Development of dual-targeted nano-dandelion based on an oligomeric hyaluronic acid polymer targeting tumor-associated macrophages for combination therapy of non-small cell lung cancer. Drug Deliv., 2019, 26(1), 1265-1279. doi: 10.1080/10717544.2019.1693707 PMID: 31777307
  188. Mansourizadeh, F.; Alberti, D.; Bitonto, V.; Tripepi, M.; Sepehri, H.; Khoee, S.; Geninatti Crich, S. Efficient synergistic combination effect of Quercetin with Curcumin on breast cancer cell apoptosis through their loading into Apo ferritin cavity. Colloids Surf. B Biointerfaces, 2020, 191, 110982. doi: 10.1016/j.colsurfb.2020.110982 PMID: 32220813
  189. Qiao, Y.; Cao, Y.; Yu, K.; Zong, L.; Pu, X. Preparation and antitumor evaluation of quercetin nanosuspensions with synergistic efficacy and regulating immunity. Int. J. Pharm., 2020, 589, 119830. doi: 10.1016/j.ijpharm.2020.119830 PMID: 32877732
  190. Rofeal, M.G.; Elzoghby, A.O.; Helmy, M.W.; Khalil, R.; Khairy, H.; Omar, S. Dual therapeutic targeting of lung infection and carcinoma using lactoferrin-based green nanomedicine. ACS Biomater. Sci. Eng., 2020, 6(10), 5685-5699. doi: 10.1021/acsbiomaterials.0c01095 PMID: 33320553
  191. Shen, Y.; TanTai, J. Co-delivery anticancer drug nanoparticles for synergistic therapy against lung cancer cells. Drug Des. Devel. Ther., 2020, 14, 4503-4510. doi: 10.2147/DDDT.S275123 PMID: 33122893
  192. Shitole, A.A.; Sharma, N.; Giram, P.; Khandwekar, A.; Baruah, M.; Garnaik, B.; Koratkar, S. LHRH-conjugated, PEGylated, poly-lactide-co-glycolide nanocapsules for targeted delivery of combinational chemotherapeutic drugs Docetaxel and Quercetin for prostate cancer. Mater. Sci. Eng. C, 2020, 114, 111035. doi: 10.1016/j.msec.2020.111035 PMID: 32994029
  193. Tian, H.; Zhang, J.; Zhang, H.; Jiang, Y.; Song, A.; Luan, Y. Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of biotin-tailored IR780 and quercetin. Chem. Eng. J., 2020, 382, 123043. doi: 10.1016/j.cej.2019.123043
  194. Wang, B.; Guo, C.; Liu, Y.; Han, G.; Li, Y.; Zhang, Y.; Xu, H.; Chen, D. Novel nano-pomegranates based on astragalus polysaccharides for targeting ERα-positive breast cancer and multidrug resistance. Drug Deliv., 2020, 27(1), 607-621. doi: 10.1080/10717544.2020.1754529 PMID: 32308054
  195. Wang, T.; Wu, C.; Li, T.; Fan, G.; Gong, H.; Liu, P.; Yang, Y.; Sun, L. Comparison of two nanocarriers for quercetin in morphology, loading behavior, release kinetics and cell inhibitory activity. Mater. Express, 2020, 10(10), 1589-1598. doi: 10.1166/mex.2020.1796
  196. Nematollahi, E.; Pourmadadi, M.; Yazdian, F.; Fatoorehchi, H.; Rashedi, H.; Nigjeh, M.N. Synthesis and characterization of chitosan/polyvinylpyrrolidone coated nanoporous γ-Alumina as a pH-sensitive carrier for controlled release of quercetin. Int. J. Biol. Macromol., 2021, 183, 600-613. doi: 10.1016/j.ijbiomac.2021.04.160 PMID: 33932424
  197. Wang, J.; Cheng, H.; Wang, Z.; Yang, E.; Guo, F.; Wang, W.; Sun, D. Human small intestine cancer cell membrane-camouflaged quercetin-melanin for antibacterial and antitumor activity. J. Biomed. Mater. Res. B Appl. Biomater., 2021, 109(10), 1534-1551. doi: 10.1002/jbm.b.34813 PMID: 33559310
  198. Rahmanian, N.; Hamishehkar, H.; Dolatabadi, J.E.N.; Arsalani, N. Nano graphene oxide: A novel carrier for oral delivery of flavonoids. Colloids Surf. B Biointerfaces, 2014, 123, 331-338. doi: 10.1016/j.colsurfb.2014.09.036 PMID: 25282100
  199. Lee, X.J.; Lim, H.N.; Gowthaman, N.S.K.; Rahman, M.B.A.; Che Abdullah, C.A.; Muthoosamy, K. In-situ surface functionalization of superparamagnetic reduced graphene oxide – Fe3O4 nanocomposite via Ganoderma lucidum extract for targeted cancer therapy application. Appl. Surf. Sci., 2020, 512, 145738. doi: 10.1016/j.apsusc.2020.145738
  200. Huang, C.; Chen, T.; Zhu, D.; Huang, Q. Enhanced tumor targeting and radiotherapy by quercetin loaded biomimetic nanoparticles. Front Chem., 2020, 8, 225. doi: 10.3389/fchem.2020.00225 PMID: 32296682
  201. Liu, M.; Fu, M.; Yang, X.; Jia, G.; Shi, X.; Ji, J.; Liu, X.; Zhai, G. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surf. B Biointerfaces, 2020, 196, 111284. doi: 10.1016/j.colsurfb.2020.111284 PMID: 32771817
  202. Mittal, A.K.; Kumar, S.; Banerjee, U.C. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J. Colloid Interface Sci., 2014, 431, 194-199. doi: 10.1016/j.jcis.2014.06.030 PMID: 25000181
  203. Lou, M.; Zhang, L.; Ji, P.; Feng, F.; Liu, J.; Yang, C.; Li, B.; Wang, L. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomed. Pharmacother., 2016, 84, 1-9. doi: 10.1016/j.biopha.2016.08.055 PMID: 27621033
  204. Patra, M.; Mukherjee, R.; Banik, M.; Dutta, D.; Begum, N.A.; Basu, T. Calcium phosphate-quercetin nanocomposite (CPQN): A multi-functional nanoparticle having pH indicating, highly fluorescent and anti-oxidant properties. Colloids Surf. B Biointerfaces, 2017, 154, 63-73. doi: 10.1016/j.colsurfb.2017.03.018 PMID: 28324689
  205. Ren, K.W.; Li, Y.H.; Wu, G.; Ren, J.Z.; Lu, H.B.; Li, Z.M.; Han, X.W. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int. J. Oncol., 2017, 50(4), 1299-1311. doi: 10.3892/ijo.2017.3886 PMID: 28259895
  206. Zhang, Z.; Xu, S.; Wang, Y.; Yu, Y.; Li, F.; Zhu, H.; Shen, Y.; Huang, S.; Guo, S. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J. Colloid Interface Sci., 2018, 509, 47-57. doi: 10.1016/j.jcis.2017.08.097 PMID: 28881205
  207. George, D.; Maheswari, P.U.; Begum, K.M.M.S. Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. Int. J. Biol. Macromol., 2019, 132, 784-794. doi: 10.1016/j.ijbiomac.2019.04.008 PMID: 30951778
  208. Lakshmi, B.A.; Kim, S. Quercetin mediated gold nanoclusters explored as a dual functional nanomaterial in anticancer and bio-imaging disciplines. Colloids Surf. B Biointerfaces, 2019, 178, 230-237. doi: 10.1016/j.colsurfb.2019.02.054 PMID: 30870790
  209. Maghsoodloo, S.; Ebrahimzadeh, M.A.; Tavakoli, S.; Mohammadi, H.; Biparva, P.; Rafiei, A. Green synthesis of multifunctional silver nanoparticles using quercetin and their therapeutic potential. J. Nanomed. Res., 2020, 5(2), 171-181.
  210. Naderi, E.; Aghajanzadeh, M.; Zamani, M.; Hashiri, A.; Sharafi, A.; Kamalianfar, A.; Naseri, M.; Danafar, H. Improving the anti-cancer activity of quercetin-loaded AgFeO2 through UV irradiation: Synthesis, characterization, and in vivo and in vitro biocompatibility study. J. Drug Deliv. Sci. Technol., 2020, 57, 101645. doi: 10.1016/j.jddst.2020.101645
  211. Sun, X.; Li, Y.; Xu, L.; Shi, X.; Xu, M.; Tao, X.; Yang, G. Heparin coated meta-organic framework co-delivering doxorubicin and quercetin for effective chemotherapy of lung carcinoma. J. Int. Med. Res., 2020, 48(2) doi: 10.1177/0300060519897185 PMID: 32054349
  212. Sadalage, P.S.; Patil, R.V.; Havaldar, D.V.; Gavade, S.S.; Santos, A.C.; Pawar, K.D. Optimally biosynthesized, PEGylated gold nanoparticles functionalized with quercetin and camptothecin enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities. J. Nanobiotechnology, 2021, 19(1), 84. doi: 10.1186/s12951-021-00836-1 PMID: 33766058
  213. Thakur, N.S.; Mandal, N.; Patel, G.; Kirar, S.; Reddy, Y.N.; Kushwah, V.; Jain, S.; Kalia, Y.N.; Bhaumik, J.; Banerjee, U.C. Co-administration of zinc phthalocyanine and quercetin via hybrid nanoparticles for augmented photodynamic therapy. Nanomedicine, 2021, 33, 102368. doi: 10.1016/j.nano.2021.102368 PMID: 33548477
  214. Minaei, A.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol. Biol. Rep., 2016, 43(2), 99-105. doi: 10.1007/s11033-016-3942-x PMID: 26748999
  215. Han, Q.; Yang, R.; Li, J.; Liang, W.; Zhang, Y.; Dong, M.; Besenbacher, F.; Wang, C. Enhancement of biological activities of nanostructured hydrophobic drug species. Nanoscale, 2012, 4(6), 2078-2082. doi: 10.1039/c2nr12013e PMID: 22331105
  216. Lockhart, J.N.; Stevens, D.M.; Beezer, D.B.; Kravitz, A.; Harth, E. Dual drug delivery of tamoxifen and quercetin: Regulated metabolism for anticancer treatment with nanosponges. J. Control. Release, 2015, 220(Pt B), 751-757. doi: 10.1016/j.jconrel.2015.08.052 PMID: 26344396

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers