Vol 31, No 9 (2024)
- Year: 2024
- Articles: 8
- URL: https://jdigitaldiagnostics.com/0929-8673/issue/view/10098
Anti-Infectives and Infectious Diseases
Meet the Regional Editor



Metabolic Reprogramming of Immune Cells Following Vaccination: From Metabolites to Personalized Vaccinology
Abstract
Identifying metabolic signatures induced by the immune response to vaccines allows one to discriminate vaccinated from non-vaccinated subjects and decipher the molecular mechanisms associated with the host immune response. This review illustrates and discusses the results of metabolomics-based studies on the innate and adaptive immune response to vaccines, long-term functional reprogramming (immune memory), and adverse reactions. Glycolysis is not overexpressed by vaccines, suggesting that the immune cell response to vaccinations does not require rapid energy availability as necessary during an infection. Vaccines strongly impact lipids metabolism, including saturated or unsaturated fatty acids, inositol phosphate, and cholesterol. Cholesterol is strategic for synthesizing 25-hydroxycholesterol in activated macrophages and dendritic cells and stimulates the conversion of macrophages and T cells in M2 macrophage and Treg, respectively. In conclusion, the large-scale application of metabolomics enables the identification of candidate predictive biomarkers of vaccine efficacy/tolerability.



NLS-3 (Levophacetoperane or (R,R) Phacetoperane): A Reverse Ester of Methylphenidate: A Literature Review
Abstract
Background: NLS-3 or (R, R) enantiomer of phacetoperane (levophacetoperane) is the reverse ester of methylphenidate, a well-documented psychostimulant marketed for the treatment of attention-deficit/hyperactivity disorder (ADHD) since the end of 1950s. Launched in Canada and Europe by Specia Rhône-Poulenc and Rhodia, marketed as Lidepran® (8228 R.P.), for the treatment of obesity and depression, phacetoperane became an increasingly popular psychiatric medication from 1959 to 1967. Previous data supported that the stimulant effect of phacetoperane differed from those of other medications acting on the catecholamine system (e.g., methylphenidate, amphetamine), with an advantage of benefit/risk balance. Method: The goal of this study is to characterize the binding profile of NLS-3 using in vitro and in vivo assays and hypothesize potential therapeutic uses considering all available data. Results: A complete binding profile assay confirmed the potential benefit of phacetoperane with a higher benefit/risk compared to other stimulants. NLS-3 synthesis resulted from phenylketone, which is also used for the synthesis of methylphenidate. It differs from that used by Rhône-Poulenc SA laboratories, allowing the possibility of individualizing several enantiomers not synthesized previously. The present review also confirmed extensive clinical use of the compound in almost one thousand children and adolescents in large dose ranges with fewer side effects versus comparative treatments. Furthermore, levophacetoperane was found to be generally well-tolerated by the subjects. Conclusion: NLS-3 could be a safer and more potent alternative to stimulants for patients with ADHD.



Research Progress in the Clinical Treatment of Familial Hypercholesterolemia
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant inheritable disease with severe disorders of lipid metabolism. It is mainly marked by increasing levels of plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), xanthoma, corneal arch, and early-onset coronary heart disease (CHD). The prevalence of FH is high, and it is dangerous and clinically underdiagnosed. The clinical treatment for FH includes both pharmacological and non-pharmacological treatment, of which non-pharmacological treatment mainly includes therapeutic lifestyle change and dietary therapy, LDL apheresis, liver transplantation and gene therapy. In recent years, many novel drugs have been developed to treat FH more effectively. In addition, the continuous maturity of non-pharmacological treatment techniques has also brought more hope for the treatment of FH. This paper analyzes the pathogenic mechanism and the progress in clinical treatment of FH. Furthermore, it also summarizes the mechanism and structure-activity relationship of FH therapeutic drugs that have been marketed. In a word, this article provides a reference value for the research and development of FH therapeutic drugs.



Application of Nanoparticles for Efficient Delivery of Quercetin in Cancer Cells
Abstract
Quercetin (Qu, 3,5,7,3, 4-pentahydroxyflavanone) is a natural polyphenol compound abundantly found in health food or plant-based products. In recent decades, Qu has gained significant attention in the food, cosmetic, and pharmaceutic industries owning to its wide beneficial therapeutic properties such as antioxidant, anti-inflammatory and anticancer activities. Despite the favorable roles of Qu in cancer therapy due to its numerous impacts on the cell signaling axis, its poor chemical stability and bioavailability, low aqueous solubility as well as short biological half-life have limited its clinical application. Recently, drug delivery systems based on nanotechnology have been developed to overcome such limitations and enhance the Qu biodistribution following administration. Several investigations have indicated that the nano-formulation of Qu enjoys more remarkable anticancer effects than its free form. Furthermore, incorporating Qu in various nano-delivery systems improved its sustained release and stability, extended its circulation time, enhanced its accumulation at target sites, and increased its therapeutic efficiency. The purpose of this study was to provide a comprehensive review of the anticancer properties of various Qu nano-formulation to augment their effects on different malignancies. Various targeting strategies for improving Qu delivery, including nanoliposomes, lipids, polymeric, micelle, and inorganic nanoparticle NPs, have been discussed in this review. The results of the current study illustrated that a combination of appropriate nano encapsulation approaches with tumor-oriented targeting delivery might lead to establishing QU nanoparticles that can be a promising technique for cancer treatment.



The Impact of lncRNA-GAS5/miRNA-200/ACE2 Molecular Pathway on the Severity of COVID-19
Abstract
Background:The severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2), which is responsible for coronavirus disease (COVID-19), potentially has severe adverse effects, leading to public health crises worldwide. In COVID-19, deficiency of ACE-2 is linked to increased inflammation and cytokine storms via increased angiotensin II levels and decreased ACE-2/Mas receptor axis activity. MiRNAs are small sequences of noncoding RNAs that regulate gene expression by binding to the targeted mRNAs. MiR-200 dysfunction has been linked to the development of ARDS following acute lung injury and has been proposed as a key regulator of ACE2 expression. LncRNA growth arrest-specific transcript 5 (GAS5) has been recently studied for its modulatory effect on the miRNA-200/ACE2 axis.
Objective:The current study aims to investigate the role of lncRNA GAS5, miRNA-200, and ACE2 as new COVID-19 diagnostic markers capable of predicting the severity of SARS-CoV-2 complications.
Methods:A total of 280 subjects were classified into three groups: COVID-19-negative controls (n = 80), and COVID-19 patients (n=200) who required hospitalization were classified into two groups: group (2) moderate cases (n = 112) and group (3) severe cases (n = 88).
Results:The results showed that the serum GAS5 expression was significantly down-expressed in COVID-19 patients; as a consequence, the expression of miR-200 was reported to be overexpressed and its targeted ACE2 was down-regulated. The ROC curve was drawn to examine the diagnostic abilities of GAS5, miR-200, and ACE2, yielding high diagnostic accuracy with high sensitivity and specificity.
Conclusion:lncRNA-GAS5, miRNA-200, and ACE2 panels presented great diagnostic potential as they demonstrated the highest diagnostic accuracy for discriminating moderate COVID-19 and severe COVID-19 cases.



PAFAH1B3 Regulates Papillary Thyroid Carcinoma Cell Proliferation and Metastasis by Affecting the EMT
Abstract
Introduction:Thyroid carcinoma (TC) is currently the prevalent type of endocrine malignancy worldwide, having an incidence of around 15.5 per 100,000 people. However, the underlying mechanisms of TC tumorigenesis remain to be further elucidated.
Methods:Performing the database analyses, Platelet-activating factor acetylhydrolase 1B3 (PAFAH1B3) was found to be dysregulated in several carcinomas and might trigger tumor occurrence as well as the progression of TC. Clinicopathological information of patients from our local validated cohort and The Cancer Genome Atlas (TCGA) cohort also confirmed this hypothesis
Results:Our present research showed that elevated expression of PAFAH1B3 has a close association with worse behavior in papillary thyroid carcinoma (PTC). We utilized the small interfering RNA to obtain the PAFAH1B3-transfected PTC cell lines, including BCPAP, FTC-133, and TPC-1, and then further examined their biological function in vitro. Furthermore, gene set enrichment analysis suggested that PAFAH1B3 is implicated with epithelial-mesenchymal transition (EMT). Afterward, the western blotting assays aimed at EMT-related proteins were performed.
Conclusion:In short, our results revealed that silencing PAFAH1B3 could hinder the capabilities of proliferation, migration, and invasion of PTC cells. Increasing expression of PAFAH1B3 might be of quintessence with lymph node metastasis by triggering EMT in PTC patients



Discovery of Novel Cysteine Protease Inhibitors for the Treatment of Coronavirus (COVID-19)
Abstract
The application describes compounds, such as compounds of general Formula, with warheads and their use in treating medical diseases or disorders, such as viral infections. Pharmaceutical compositions and synthetic methods of various compounds with warheads are included. The compounds are inhibitors of proteases, such as the 3C, CL- or 3CL-like protease.


