Shock waves in a one-dimensional semi-infinite hyperelastic rod
- Authors: Kuznetsov S.V.1,2, Mitroshin V.A.2
-
Affiliations:
- Institute of Problems of Mechanical Engineering RAS named after A.Yu. Ishlinsky
- National Research Moscow State University of Civil Engineering (NIU MGSU)
- Issue: No 5 (2025)
- Pages: 124-143
- Section: Articles
- URL: https://jdigitaldiagnostics.com/1026-3519/article/view/691678
- DOI: https://doi.org/10.31857/S1026351925050074
- EDN: https://elibrary.ru/bvltrd
- ID: 691678
Cite item
Abstract
The excitation of a harmonic wave in a semi–infinite incompressible hyperelastic one-dimensional rod (material according to the Mooney–Rivlin model) leads to the formation and propagation of shock wave fronts arising between half-waves of the initial harmonic wave moving at different speeds. Shock wave fronts lead to the absorption of slow-moving parts by faster ones and, consequently, reduce both kinetic energy and elastic deformation energy with the corresponding release of heat. The explicit Lax–Wendroff difference scheme in combination with the finite element method is used to solve geometrically and physically nonlinear equations of motion.
About the authors
S. V. Kuznetsov
Institute of Problems of Mechanical Engineering RAS named after A.Yu. Ishlinsky; National Research Moscow State University of Civil Engineering (NIU MGSU)
Email: kuzn-sergey@yandex.ru
Москва, Россия; Москва, Россия
V. A. Mitroshin
National Research Moscow State University of Civil Engineering (NIU MGSU)
Email: mitroshin.vasiliy@yandex.ru
Москва, Россия
References
- Rankine W.J.M. On the thermodynamic theory of waves of finite longitudinal disturbances // Phil. Trans. R. Soc. Lond. 1870. Т. 160. С. 277–286.
- Cui W., Mu X., Chen W., Stephens T.A., Bledsoe B.P. Emergency control scheme for upstream pools of long-distance canals // Irrig. Drain. 2018. V. 68. № 2. P. 218–226. https://doi.org/10.1002/ird.2297
- Hunter J.K., Keller J.B. Caustics of nonlinear waves // Wave Motion. 1987. V. 9. № 5. P. 429–443. https://doi.org/10.1016/0165-2125(87)90031-X
- Sasoh A., Ohtani T., Mori K. Pressure effect in a shock-wave plasma interaction induced by a focused laser pulse // Phys. Rev. Lett. 2006. V. 97 № 20. P. 205004. https://doi.org/10.1103/PhysRevLett.97.205004
- Znamenskaya I.A., Koroteev D.A., Lutskiy A.E. Discontinuity breakdown on shock wave interaction with nanosecond discharge // Phys. Fluids. 2008. V. 20. P. 056101. https://doi.org/10.1063/1.2908010
- Kulikovskii A.G. Multi-parameter fronts of strong discontinuities in continuum mechanics // J. Appl. Math. Mech. 2011. V. 75. № 4. P. 378–389. https://doi.org/10.1016/j.jappmathmech.2011.09.002
- Zhang S. Shock wave evolution and discontinuity propagation for relativistic superfluid hydrodynamics with spontaneous symmetry breaking // Phys. Lett. B. 2014. V. 729. P. 136–142. https://doi.org/10.1016/j.physletb.2014.01.014
- Morduchow M., Libby P.A. On the distribution of entropy through a shock wave // J. Mécanique. 1965. V. 4. P. 191–213.
- Zeldovich Y.B., Raizer Y.P. Physics of shock waves and high-temperature hydrodynamic phenomena, 2nd ed. New York: Academic Press, 1967.
- Ridah A. Shock waves in water // J. Appl. Phys. 1988. V. 64. P. 152–158. https://doi.org/10.1063/1.341448
- Arima T., Taniguchsi S., Ruggeri T., Sugiyama T. Extended thermodynamics of dense gases // Contin. Mech. Thermodyn. 2012. V. 24. P. 271–292. https://doi.org/10.1007/s00161-011-0213-x
- Velasco R.M., Garcia-Colin L.S., Uribe F.J. Entropy production: Its role in nonequilibrium thermodynamics // Entropy. 2011. V. 13. № 1. P. 82–116. https://doi.org/10.3390/e13010082
- Margolin L.G. Nonequilibrium entropy in a shock // Entropy. 2017. V. 19. № 7. P. 368. https://doi.org/10.3390/e19070368
- Hafskjold B., Bedeaux D., Kjelstrup S., Wilhelmsen A. Nonequilibrium thermodynamics of surfaces captures the energy conversions in a shock wave // Chem. Phys. Lett. 2020. V. 738. P. 100054. https://doi.org/10.1016/j.cpletx.2020.100054
- Pence T.J., Gou K. On compressible stress of the incompressible neo-Hookean material // Math. Mech. Solids. 2015. V. 20. № 3. P. 157–182. https://doi.org/10.1177/1081286514544258
- Maslov V.P., Mosolov P.P. General theory of the solutions of the equations of motion of an elastic medium of different moduli // J. Appl. Math. Mech. 1985. V. 49. № 3. С. 322–336. https://doi.org/10.1016/0021-8928(85)90031-0
- Ostrovsky L.A. Wave processes in media with strong acoustic nonlinearity // J. Acoust. Soc. Am. 1991. V. 90. P. 3332–3337. https://doi.org/10.1121/1.401444
- Kuznetsov S.V. Love waves in nondestructive diagnostics of layered composites // Survey. Acoust. Phys. 2010. V. 56. P. 877–892. https://doi.org/10.1134/S1063771010060126
- Lucchesi M., Pagni A. Longitudinal oscillations of bimodular rods // Int. J. Struct. Stab. Dyn. 2005. V. 5. P. 37–53. https://doi.org/10.1142/S0219455405001490
- Gavrilov S.N., Herman G.C. Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading // J. Sound Vib. 2012. V. 331. № 20. P. 444–4480. https://doi.org/10.1016/j.jsv.2012.05.022
- Naeeni M.R., Eskandari-Ghadi M., Ardalan A.A., Pak R.Y.S., Rahimian M., Hayati Y. Coupled thermoviscoelastodynamic Green’s functions for bi-material half-space // Z. Angew. Math. Mech. 2015. V. 95. № 3. P. 260–282. https://doi.org/10.1002/zamm.201200135
- Li S.J., Brun M., Djeran-Maigre I., Kuznetsov S. Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains // Comput. Geotech. 2019. V. 109. P. 69–81. https://doi.org/10.1016/j.compgeo.2019.01.019
- Kuznetsova M., Khudyakov M., Sadovskiy I. Wave propagation in continuous bimodular media // Mech. Adv. Mater. Struct. 2022. V. 29. № 21. P. 3147–3162. https://doi.org/10.1080/15376494.2021.1889725
- Truesdell C. General and exact theory of waves in finite elastic strain // Arch. Rat. Mech. Anal. 1961. V. 8. P. 263–296. https://doi.org/10.2514/8.2495
- Coleman B.D., Gurtin M.E., Herrera I. Waves in materials with memory, I. The velocity of one-dimensional shock and acceleration waves // Arch. Rat. Mech. Anal. 1965. V. 19. P. 1–19. https://doi.org/10.1007/BF00252275
- Truesdell C. On curved shocks in steady plane flow of an ideal fluid // J. Aeronaut. Sci. 1952. V. 19. P. 826–834. https://doi.org/10.2514/8.2495
- Boulanger P., Hayes M.A. Finite amplitude waves in Mooney–Rivlin and Hadamard materials // In: Topics in Finite Elasticity. Vienna: Springer, 2001.
- Liu C., Cady C.M., Lovato M.L., Orler E.B. Uniaxial tension of thin rubber liner sheets and hyperelastic model investigation // J. Mater. Sci. 2015. V. 50. P. 1401–1411. https://doi.org/10.1007/s10853-014-8700-7
- Hill R. Acceleration waves in solids // J. Mech. Phys. Solids. 1962. V. 10. № 1. P. 1–16.
- Hashiguchi K. Nonlinear continuum mechanics for finite elasticity-plasticity. New York: Elsevier, 2020.
- LeVeque R.J. Numerical Methods for Conservation Laws. Boston: Birkhäuser, 1992.
- Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed. New York: Cambridge University Press, 2007.
- Ilyashenko A.V., Kuznetsov S.V. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media // Russ. J. Nondestr. Test. 2017. V. 5. P. 243–259. https://doi.org/10.1134/S1061830917040039
- Truesdell C., Noll W. The non-linear field theories of mechanics, 3rd ed. Berlin/Heidelberg: Springer, 2004.
- Kuznetsov S.V. Closed form analytical solution for dispersion of Lamb waves in FG plates // Wave Motion. 2019. V. 84. P. 1–7. https://doi.org/10.1016/j.wavemoti.2018.09.018
- Li S., Brun M., Djeran-Maigre I., Kuznetsov S. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // Europ. J. Environ. Civil Eng. 2000. V. 24. № 14. С. 2400–2421. https://doi.org/10.1080/19648189.2018.1506826
- Grady D.E. Shock-wave compression of brittle solids // Mechanics of Materials. 1998. V. 29. № 3–4. P. 181–203. https://doi.org/10.1016/S0167-6636(98)00015-5
- Lion A. On the large deformation behaviour of reinforced rubber at different temperatures // J. Mech. Phys. Solids. 1997. V. 45. № 11-12. P. 1805–1834. https://doi.org/10.1016/S0022-5096(97)00028-8
- LeMet PD. Hyperbolic Systems of conservation laws and the mathematical theory of shock waves. Philadelphia: SIAM, 1972.
- Belytschko T., Liu W.K., Moran B., Elkhodary K. Nonlinear finite elements for continua and structures. 2nd ed. New York: Wiley, 2013.
- Dumbser M. Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws // Comput. Methods Appl. Mech. Eng. 2014. V. 280. P. 57–83. https://doi.org/10.1016/j.cma.2014.07.019
- Neto M.A., Amaro A., Rosero L., Cime J., Leal R. Finite element method for trusses // In: Engineering Computation of Structures: The Finite Element Method. Berlin/Heidelberg: Springer, 2015. https://doi.org/10.1007/978-3-319-17710-6_3
- Jerrams S., Bowen J. Modelling the behaviour of rubber-like materials to obtain components with rigidity modulus tests // WIT Trans. Model. Simul. 1995. V. 12. P. CMEM95061. https://doi.org/10.2495/CMEM950561
- Chen J., Garcia E.S., Zimmerman S.C. Intramolecularly cross-linked polymers: From structure to function with applications as artificial antibodies and artificial enzymes // Acc. Chem. Res. 2020. V. 53. № 6. P. 1244–1256. https://doi.org/10.1021/acs.accounts.0c00178
- D’Amato M., Gigliotti R., Laguardia R. Seismic isolation for protecting historical buildings: A case study // Front. Built Environ. 2019. V. 5. P. 87. https://doi.org/10.3389/fbuil.2019.00087
- Goldstein R.V., Dudenko A.V., Kuznetsov S.V. The modified Cam-Clay (MCC) model: Cyclic kinematic deviatoric loading // Arch. Appl. Mech. 2016. V. 86. P. 2021–2031. https://doi.org/10.1007/s00419-016-1169-x
- Carcione J.M., Kosloff D. Representation of matched-layer kernels with viscoelastic mechanical models // Int. J. Numer. Anal. Model. 2013. V. 10. P. 221–232.
- Li S., Brun M., Djeran-Maigre I., Kuznetsov S. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Comput. Geotech. 2021. V. 131. P. 103808. https://doi.org/10.1016/j.compgeo.2020.103808
- Kuznetsov S. Fundamental and singular solutions of Lamb equations for media with arbitrary elastic anisotropy // Q. Appl. Math. 2005. V. 63. P. 455–467. https://doi.org/10.1090/S0033-569X-05-00969-X
- Kuznetsov S. Seismic waves and seismic barriers // Acoust. Phys. 2011. V. 57. P. 420–426. https://doi.org/10.1134/S1063771011030109
- Haris A., Alveras P., Mohammadipour M., Mahony M.O. Design and validation of a nonlinear vibration absorber to attenuate torsional oscillations of propulsion systems // Nonlinear Dyn. 2020. V. 100. P. 33–49. https://doi.org/10.1007/s11071-020-05502-z
- Safari S., Tannieraj R. Parametric study of stochastic seismic responses of base-isolated liquid storage tanks under near-fault and far-fault ground motions // J. Vib. Control. 2018. V. 24. № 24. P. 5747–5764. https://doi.org/10.1177/1077546316647576
- Carranza J.C., Brennan M.J., Tang B. Sources and propagation of nonlinearity in a vibration isolator with geometrically nonlinear damping // J. Vibr. Acoust. 2015. V. 138. № 2. P. 024501. https://doi.org/10.1115/1.4031997
- Zhu Y.P., Lang Z.Q. Beneficial effects of antisymmetric nonlinear damping with application to energy harvesting and vibration isolation under general inputs // Nonlinear Dyn. 2022. V. 108. С. 2917–2933. https://doi.org/10.1007/s11071-022-07444-0
- Harris C., Piersol A. Harris shock and vibration handbook, 5th ed. New York: McGraw-Hill, 2002.
- Kuznetsov S. Subsonic Lamb waves in anisotropic plates // Q. Appl. Math. 2002. V. 60. P. 577–587. https://doi.org/10.1090/qam/1914442
- Carboni B., Lacarbonara W. Nonlinear dynamic characterization of a new hysteretic device: Experiments and computations // Nonlinear Dyn. 2016. V. 83. P. 23–39. https://doi.org/10.1007/s11071-015-2305-9
- Kuznetsov S. “Forbidden” planes for Rayleigh waves // Q. Appl. Math. 2002. V. 60. P. 87–97. https://doi.org/10.1090/qam/1878260
- Tian J.H., Luo Y., Zhao L. Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes // Earth Planet. Phys. 2019. V. 3. № 3. P. 243–252. https://doi.org/10.26464/epp2019024
- Ben-Menahem S., Singh S.J. Seismic Waves and Sources. New York: Springer, 2011.
- Sutton G.H., Mitronovas W., Pomeroy P.W. Short-period seismic energy radiation patterns from underground nuclear explosions and small-magnitude earthquakes // Bull. Seismol. Soc. Am. 1967. V. 57. P. 249–267. https://doi.org/10.1785/BSSA0570020249
- Dudchenko A.V., Dias D. Vertical wave barriers for vibration reduction // Arch. Appl. Mech. 2020. V. 91. P. 257–276. https://doi.org/10.1007/s00419-020-01768-2
- Placinta A.-O., Borleanu F., Moldovan I.-A., Coman A. Correlation between seismic waves velocity changes and the occurrence of moderate earthquakes at the bending of the Eastern Carpathians (Vrancea) // Acoustics. 2022. V. 4. № 4. P. 934–947. https://doi.org/10.3390/acoustics4040057
- Petrescu L., Borleanu F., Radulian M., Ismail-Zadeh A., Mătenco L. Tectonic regimes and stress patterns in the Vrancea Seismic Zone: Insights into intermediate-depth earthquake nests in locked collisional settings // Tectonophysics. 2021. V. 799. P. 228688. https://doi.org/10.1016/j.tecto.2020.228688
- Rankine W.J.M. On the thermodynamic theory of waves of finite longitudinal disturbances // Phil. Trans. R. Soc. Lond. 1870. Т. 160. С. 277–286.
- Cui W., Mu X., Chen W., Stephens T.A., Bledsoe B.P. Emergency control scheme for upstream pools of long-distance canals // Irrig. Drain. 2018. V. 68. № 2. P. 218–226. https://doi.org/10.1002/ird.2297
- Hunter J.K., Keller J.B. Caustics of nonlinear waves // Wave Motion. 1987. V. 9. № 5. P. 429–443. https://doi.org/10.1016/0165-2125(87)90031-X
- Sasoh A., Ohtani T., Mori K. Pressure effect in a shock-wave plasma interaction induced by a focused laser pulse // Phys. Rev. Lett. 2006. V. 97 № 20. P. 205004. https://doi.org/10.1103/PhysRevLett.97.205004
- Znamenskaya I.A., Koroteev D.A., Lutskiy A.E. Discontinuity breakdown on shock wave interaction with nanosecond discharge // Phys. Fluids. 2008. V. 20. P. 056101. https://doi.org/10.1063/1.2908010
- Kulikovskii A.G. Multi-parameter fronts of strong discontinuities in continuum mechanics // J. Appl. Math. Mech. 2011. V. 75. № 4. P. 378–389. https://doi.org/10.1016/j.jappmathmech.2011.09.002
- Zhang S. Shock wave evolution and discontinuity propagation for relativistic superfluid hydrodynamics with spontaneous symmetry breaking // Phys. Lett. B. 2014. V. 729. P. 136–142. https://doi.org/10.1016/j.physletb.2014.01.014
- Morduchow M., Libby P.A. On the distribution of entropy through a shock wave // J. Mécanique. 1965. V. 4. P. 191–213.
- Zeldovich Y.B., Raizer Y.P. Physics of shock waves and high-temperature hydrodynamic phenomena, 2nd ed. New York: Academic Press, 1967.
- Ridah A. Shock waves in water // J. Appl. Phys. 1988. V. 64. P. 152–158. https://doi.org/10.1063/1.341448
- Arima T., Taniguchsi S., Ruggeri T., Sugiyama T. Extended thermodynamics of dense gases // Contin. Mech. Thermodyn. 2012. V. 24. P. 271–292. https://doi.org/10.1007/s00161-011-0213-x
- Velasco R.M., Garcia-Colin L.S., Uribe F.J. Entropy production: Its role in nonequilibrium thermodynamics // Entropy. 2011. V. 13. № 1. P. 82–116. https://doi.org/10.3390/e13010082
- Margolin L.G. Nonequilibrium entropy in a shock // Entropy. 2017. V. 19. № 7. P. 368. https://doi.org/10.3390/e19070368
- Hafskjold B., Bedeaux D., Kjelstrup S., Wilhelmsen A. Nonequilibrium thermodynamics of surfaces captures the energy conversions in a shock wave // Chem. Phys. Lett. 2020. V. 738. P. 100054. https://doi.org/10.1016/j.cpletx.2020.100054
- Pence T.J., Gou K. On compressible stress of the incompressible neo-Hookean material // Math. Mech. Solids. 2015. V. 20. № 3. P. 157–182. https://doi.org/10.1177/1081286514544258
- Maslov V.P., Mosolov P.P. General theory of the solutions of the equations of motion of an elastic medium of different moduli // J. Appl. Math. Mech. 1985. V. 49. № 3. С. 322–336. https://doi.org/10.1016/0021-8928(85)90031-0
- Ostrovsky L.A. Wave processes in media with strong acoustic nonlinearity // J. Acoust. Soc. Am. 1991. V. 90. P. 3332–3337. https://doi.org/10.1121/1.401444
- Kuznetsov S.V. Love waves in nondestructive diagnostics of layered composites // Survey. Acoust. Phys. 2010. V. 56. P. 877–892. https://doi.org/10.1134/S1063771010060126
- Lucchesi M., Pagni A. Longitudinal oscillations of bimodular rods // Int. J. Struct. Stab. Dyn. 2005. V. 5. P. 37–53. https://doi.org/10.1142/S0219455405001490
- Gavrilov S.N., Herman G.C. Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading // J. Sound Vib. 2012. V. 331. № 20. P. 444–4480. https://doi.org/10.1016/j.jsv.2012.05.022
- Naeeni M.R., Eskandari-Ghadi M., Ardalan A.A., Pak R.Y.S., Rahimian M., Hayati Y. Coupled thermoviscoelastodynamic Green’s functions for bi-material half-space // Z. Angew. Math. Mech. 2015. V. 95. № 3. P. 260–282. https://doi.org/10.1002/zamm.201200135
- Li S.J., Brun M., Djeran-Maigre I., Kuznetsov S. Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains // Comput. Geotech. 2019. V. 109. P. 69–81. https://doi.org/10.1016/j.compgeo.2019.01.019
- Kuznetsova M., Khudyakov M., Sadovskiy I. Wave propagation in continuous bimodular media // Mech. Adv. Mater. Struct. 2022. V. 29. № 21. P. 3147–3162. https://doi.org/10.1080/15376494.2021.1889725
- Truesdell C. General and exact theory of waves in finite elastic strain // Arch. Rat. Mech. Anal. 1961. V. 8. P. 263–296. https://doi.org/10.2514/8.2495
- Coleman B.D., Gurtin M.E., Herrera I. Waves in materials with memory, I. The velocity of one-dimensional shock and acceleration waves // Arch. Rat. Mech. Anal. 1965. V. 19. P. 1–19. https://doi.org/10.1007/BF00252275
- Truesdell C. On curved shocks in steady plane flow of an ideal fluid // J. Aeronaut. Sci. 1952. V. 19. P. 826–834. https://doi.org/10.2514/8.2495
- Boulanger P., Hayes M.A. Finite amplitude waves in Mooney–Rivlin and Hadamard materials // In: Topics in Finite Elasticity. Vienna: Springer, 2001.
- Liu C., Cady C.M., Lovato M.L., Orler E.B. Uniaxial tension of thin rubber liner sheets and hyperelastic model investigation // J. Mater. Sci. 2015. V. 50. P. 1401–1411. https://doi.org/10.1007/s10853-014-8700-7
- Hill R. Acceleration waves in solids // J. Mech. Phys. Solids. 1962. V. 10. № 1. P. 1–16.
- Hashiguchi K. Nonlinear continuum mechanics for finite elasticity-plasticity. New York: Elsevier, 2020.
- LeVeque R.J. Numerical Methods for Conservation Laws. Boston: Birkhäuser, 1992.
- Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed. New York: Cambridge University Press, 2007.
- Ilyashenko A.V., Kuznetsov S.V. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media // Russ. J. Nondestr. Test. 2017. V. 5. P. 243–259. https://doi.org/10.1134/S1061830917040039
- Truesdell C., Noll W. The non-linear field theories of mechanics, 3rd ed. Berlin/Heidelberg: Springer, 2004.
- Kuznetsov S.V. Closed form analytical solution for dispersion of Lamb waves in FG plates // Wave Motion. 2019. V. 84. P. 1–7. https://doi.org/10.1016/j.wavemoti.2018.09.018
- Li S., Brun M., Djeran-Maigre I., Kuznetsov S. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // Europ. J. Environ. Civil Eng. 2000. V. 24. № 14. С. 2400–2421. https://doi.org/10.1080/19648189.2018.1506826
- Grady D.E. Shock-wave compression of brittle solids // Mechanics of Materials. 1998. V. 29. № 3–4. P. 181–203. https://doi.org/10.1016/S0167-6636(98)00015-5
- Lion A. On the large deformation behaviour of reinforced rubber at different temperatures // J. Mech. Phys. Solids. 1997. V. 45. № 11-12. P. 1805–1834. https://doi.org/10.1016/S0022-5096(97)00028-8
- LeMet PD. Hyperbolic Systems of conservation laws and the mathematical theory of shock waves. Philadelphia: SIAM, 1972.
- Belytschko T., Liu W.K., Moran B., Elkhodary K. Nonlinear finite elements for continua and structures. 2nd ed. New York: Wiley, 2013.
- Dumbser M. Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws // Comput. Methods Appl. Mech. Eng. 2014. V. 280. P. 57–83. https://doi.org/10.1016/j.cma.2014.07.019
- Neto M.A., Amaro A., Rosero L., Cime J., Leal R. Finite element method for trusses // In: Engineering Computation of Structures: The Finite Element Method. Berlin/Heidelberg: Springer, 2015. https://doi.org/10.1007/978-3-319-17710-6_3
- Jerrams S., Bowen J. Modelling the behaviour of rubber-like materials to obtain components with rigidity modulus tests // WIT Trans. Model. Simul. 1995. V. 12. P. CMEM95061. https://doi.org/10.2495/CMEM950561
- Chen J., Garcia E.S., Zimmerman S.C. Intramolecularly cross-linked polymers: From structure to function with applications as artificial antibodies and artificial enzymes // Acc. Chem. Res. 2020. V. 53. № 6. P. 1244–1256. https://doi.org/10.1021/acs.accounts.0c00178
- D’Amato M., Gigliotti R., Laguardia R. Seismic isolation for protecting historical buildings: A case study // Front. Built Environ. 2019. V. 5. P. 87. https://doi.org/10.3389/fbuil.2019.00087
- Goldstein R.V., Dudenko A.V., Kuznetsov S.V. The modified Cam-Clay (MCC) model: Cyclic kinematic deviatoric loading // Arch. Appl. Mech. 2016. V. 86. P. 2021–2031. https://doi.org/10.1007/s00419-016-1169-x
- Carcione J.M., Kosloff D. Representation of matched-layer kernels with viscoelastic mechanical models // Int. J. Numer. Anal. Model. 2013. V. 10. P. 221–232.
- Li S., Brun M., Djeran-Maigre I., Kuznetsov S. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Comput. Geotech. 2021. V. 131. P. 103808. https://doi.org/10.1016/j.compgeo.2020.103808
- Kuznetsov S. Fundamental and singular solutions of Lamb equations for media with arbitrary elastic anisotropy // Q. Appl. Math. 2005. V. 63. P. 455–467. https://doi.org/10.1090/S0033-569X-05-00969-X
- Kuznetsov S. Seismic waves and seismic barriers // Acoust. Phys. 2011. V. 57. P. 420–426. https://doi.org/10.1134/S1063771011030109
- Haris A., Alveras P., Mohammadipour M., Mahony M.O. Design and validation of a nonlinear vibration absorber to attenuate torsional oscillations of propulsion systems // Nonlinear Dyn. 2020. V. 100. P. 33–49. https://doi.org/10.1007/s11071-020-05502-z
- Safari S., Tannieraj R. Parametric study of stochastic seismic responses of base-isolated liquid storage tanks under near-fault and far-fault ground motions // J. Vib. Control. 2018. V. 24. № 24. P. 5747–5764. https://doi.org/10.1177/1077546316647576
- Carranza J.C., Brennan M.J., Tang B. Sources and propagation of nonlinearity in a vibration isolator with geometrically nonlinear damping // J. Vibr. Acoust. 2015. V. 138. № 2. P. 024501. https://doi.org/10.1115/1.4031997
- Zhu Y.P., Lang Z.Q. Beneficial effects of antisymmetric nonlinear damping with application to energy harvesting and vibration isolation under general inputs // Nonlinear Dyn. 2022. V. 108. С. 2917–2933. https://doi.org/10.1007/s11071-022-07444-0
- Harris C., Piersol A. Harris shock and vibration handbook, 5th ed. New York: McGraw-Hill, 2002.
- Kuznetsov S. Subsonic Lamb waves in anisotropic plates // Q. Appl. Math. 2002. V. 60. P. 577–587. https://doi.org/10.1090/qam/1914442
- Carboni B., Lacarbonara W. Nonlinear dynamic characterization of a new hysteretic device: Experiments and computations // Nonlinear Dyn. 2016. V. 83. P. 23–39. https://doi.org/10.1007/s11071-015-2305-9
- Kuznetsov S. «Forbidden» planes for Rayleigh waves // Q. Appl. Math. 2002. V. 60. P. 87–97. https://dx.doi.org/10.1090/qam/1878260
- Tian J.H., Luo Y., Zhao L. Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes // Earth Planet. Phys. 2019. V. 3. № 3. P. 243–252. https://doi.org/10.26464/epp2019024
- Ben-Menahem S., Singh S.J. Seismic Waves and Sources. New York: Springer, 2011.
- Sutton G.H., Mitronovas W., Pomeroy P.W. Short-period seismic energy radiation patterns from underground nuclear explosions and small-magnitude earthquakes // Bull. Seismol. Soc. Am. 1967. V. 57. P. 249–267. https://doi.org/10.1785/BSSA0570020249
- Dudchenko A.V., Dias D. Vertical wave barriers for vibration reduction // Arch. Appl. Mech. 2020. V. 91. P. 257–276. https://doi.org/10.1007/s00419-020-01768-2
- Placinta A.-O., Borleanu F., Moldovan I.-A., Coman A. Correlation between seismic waves velocity changes and the occurrence of moderate earthquakes at the bending of the Eastern Carpathians (Vrancea) // Acoustics. 2022. V. 4. № 4. P. 934–947. https://doi.org/10.3390/acoustics4040057
- Petrescu L., Borleanu F., Radulian M., Ismail-Zadeh A., Mătenco L. Tectonic regimes and stress patterns in the Vrancea Seismic Zone: Insights into intermediate-depth earthquake nests in locked collisional settings // Tectonophysics. 2021. V. 799. P. 228688. https://doi.org/10.1016/j.tecto.2020.228688
Supplementary files
