Ударные волны в одномерном полубесконечном гиперупругом стержне

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Возбуждение гармонической волны в полубесконечном несжимаемом гиперупругом одномерном стержне (материал по модели Муни–Ривлина) приводит к формированию и распространению фронтов ударных волн, возникающих между полуволнами первоначальной гармонической волны, движущимися с разными скоростями. Фронты ударных волн приводят к поглощению медленно движущихся частей более быстрыми и, следовательно, уменьшают как кинетическую энергию, так и энергию упругой деформации с соответствующим выделением тепла. Для решения геометрически и физически нелинейных уравнений движения используется явная разностная схема Лакса–Вендроффа в сочетании с методом конечных элементов.

Об авторах

С. В. Кузнецов

Институт проблем механики РАН им. А.Ю. Ишлинского; Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)

Email: kuzn-sergey@yandex.ru
Москва, Россия; Москва, Россия

В. А. Митрошин

Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)

Email: mitroshin.vasiliy@yandex.ru
Москва, Россия

Список литературы

  1. Rankine W.J.M. On the thermodynamic theory of waves of finite longitudinal disturbances // Phil. Trans. R. Soc. Lond. 1870. Т. 160. С. 277–286.
  2. Cui W., Mu X., Chen W., Stephens T.A., Bledsoe B.P. Emergency control scheme for upstream pools of long-distance canals // Irrig. Drain. 2018. V. 68. № 2. P. 218–226. https://doi.org/10.1002/ird.2297
  3. Hunter J.K., Keller J.B. Caustics of nonlinear waves // Wave Motion. 1987. V. 9. № 5. P. 429–443. https://doi.org/10.1016/0165-2125(87)90031-X
  4. Sasoh A., Ohtani T., Mori K. Pressure effect in a shock-wave plasma interaction induced by a focused laser pulse // Phys. Rev. Lett. 2006. V. 97 № 20. P. 205004. https://doi.org/10.1103/PhysRevLett.97.205004
  5. Znamenskaya I.A., Koroteev D.A., Lutskiy A.E. Discontinuity breakdown on shock wave interaction with nanosecond discharge // Phys. Fluids. 2008. V. 20. P. 056101. https://doi.org/10.1063/1.2908010
  6. Kulikovskii A.G. Multi-parameter fronts of strong discontinuities in continuum mechanics // J. Appl. Math. Mech. 2011. V. 75. № 4. P. 378–389. https://doi.org/10.1016/j.jappmathmech.2011.09.002
  7. Zhang S. Shock wave evolution and discontinuity propagation for relativistic superfluid hydrodynamics with spontaneous symmetry breaking // Phys. Lett. B. 2014. V. 729. P. 136–142. https://doi.org/10.1016/j.physletb.2014.01.014
  8. Morduchow M., Libby P.A. On the distribution of entropy through a shock wave // J. Mécanique. 1965. V. 4. P. 191–213.
  9. Zeldovich Y.B., Raizer Y.P. Physics of shock waves and high-temperature hydrodynamic phenomena, 2nd ed. New York: Academic Press, 1967.
  10. Ridah A. Shock waves in water // J. Appl. Phys. 1988. V. 64. P. 152–158. https://doi.org/10.1063/1.341448
  11. Arima T., Taniguchsi S., Ruggeri T., Sugiyama T. Extended thermodynamics of dense gases // Contin. Mech. Thermodyn. 2012. V. 24. P. 271–292. https://doi.org/10.1007/s00161-011-0213-x
  12. Velasco R.M., Garcia-Colin L.S., Uribe F.J. Entropy production: Its role in nonequilibrium thermodynamics // Entropy. 2011. V. 13. № 1. P. 82–116. https://doi.org/10.3390/e13010082
  13. Margolin L.G. Nonequilibrium entropy in a shock // Entropy. 2017. V. 19. № 7. P. 368. https://doi.org/10.3390/e19070368
  14. Hafskjold B., Bedeaux D., Kjelstrup S., Wilhelmsen A. Nonequilibrium thermodynamics of surfaces captures the energy conversions in a shock wave // Chem. Phys. Lett. 2020. V. 738. P. 100054. https://doi.org/10.1016/j.cpletx.2020.100054
  15. Pence T.J., Gou K. On compressible stress of the incompressible neo-Hookean material // Math. Mech. Solids. 2015. V. 20. № 3. P. 157–182. https://doi.org/10.1177/1081286514544258
  16. Maslov V.P., Mosolov P.P. General theory of the solutions of the equations of motion of an elastic medium of different moduli // J. Appl. Math. Mech. 1985. V. 49. № 3. С. 322–336. https://doi.org/10.1016/0021-8928(85)90031-0
  17. Ostrovsky L.A. Wave processes in media with strong acoustic nonlinearity // J. Acoust. Soc. Am. 1991. V. 90. P. 3332–3337. https://doi.org/10.1121/1.401444
  18. Kuznetsov S.V. Love waves in nondestructive diagnostics of layered composites // Survey. Acoust. Phys. 2010. V. 56. P. 877–892. https://doi.org/10.1134/S1063771010060126
  19. Lucchesi M., Pagni A. Longitudinal oscillations of bimodular rods // Int. J. Struct. Stab. Dyn. 2005. V. 5. P. 37–53. https://doi.org/10.1142/S0219455405001490
  20. Gavrilov S.N., Herman G.C. Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading // J. Sound Vib. 2012. V. 331. № 20. P. 444–4480. https://doi.org/10.1016/j.jsv.2012.05.022
  21. Naeeni M.R., Eskandari-Ghadi M., Ardalan A.A., Pak R.Y.S., Rahimian M., Hayati Y. Coupled thermoviscoelastodynamic Green’s functions for bi-material half-space // Z. Angew. Math. Mech. 2015. V. 95. № 3. P. 260–282. https://doi.org/10.1002/zamm.201200135
  22. Li S.J., Brun M., Djeran-Maigre I., Kuznetsov S. Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains // Comput. Geotech. 2019. V. 109. P. 69–81. https://doi.org/10.1016/j.compgeo.2019.01.019
  23. Kuznetsova M., Khudyakov M., Sadovskiy I. Wave propagation in continuous bimodular media // Mech. Adv. Mater. Struct. 2022. V. 29. № 21. P. 3147–3162. https://doi.org/10.1080/15376494.2021.1889725
  24. Truesdell C. General and exact theory of waves in finite elastic strain // Arch. Rat. Mech. Anal. 1961. V. 8. P. 263–296. https://doi.org/10.2514/8.2495
  25. Coleman B.D., Gurtin M.E., Herrera I. Waves in materials with memory, I. The velocity of one-dimensional shock and acceleration waves // Arch. Rat. Mech. Anal. 1965. V. 19. P. 1–19. https://doi.org/10.1007/BF00252275
  26. Truesdell C. On curved shocks in steady plane flow of an ideal fluid // J. Aeronaut. Sci. 1952. V. 19. P. 826–834. https://doi.org/10.2514/8.2495
  27. Boulanger P., Hayes M.A. Finite amplitude waves in Mooney–Rivlin and Hadamard materials // In: Topics in Finite Elasticity. Vienna: Springer, 2001.
  28. Liu C., Cady C.M., Lovato M.L., Orler E.B. Uniaxial tension of thin rubber liner sheets and hyperelastic model investigation // J. Mater. Sci. 2015. V. 50. P. 1401–1411. https://doi.org/10.1007/s10853-014-8700-7
  29. Hill R. Acceleration waves in solids // J. Mech. Phys. Solids. 1962. V. 10. № 1. P. 1–16.
  30. Hashiguchi K. Nonlinear continuum mechanics for finite elasticity-plasticity. New York: Elsevier, 2020.
  31. LeVeque R.J. Numerical Methods for Conservation Laws. Boston: Birkhäuser, 1992.
  32. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed. New York: Cambridge University Press, 2007.
  33. Ilyashenko A.V., Kuznetsov S.V. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media // Russ. J. Nondestr. Test. 2017. V. 5. P. 243–259. https://doi.org/10.1134/S1061830917040039
  34. Truesdell C., Noll W. The non-linear field theories of mechanics, 3rd ed. Berlin/Heidelberg: Springer, 2004.
  35. Kuznetsov S.V. Closed form analytical solution for dispersion of Lamb waves in FG plates // Wave Motion. 2019. V. 84. P. 1–7. https://doi.org/10.1016/j.wavemoti.2018.09.018
  36. Li S., Brun M., Djeran-Maigre I., Kuznetsov S. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // Europ. J. Environ. Civil Eng. 2000. V. 24. № 14. С. 2400–2421. https://doi.org/10.1080/19648189.2018.1506826
  37. Grady D.E. Shock-wave compression of brittle solids // Mechanics of Materials. 1998. V. 29. № 3–4. P. 181–203. https://doi.org/10.1016/S0167-6636(98)00015-5
  38. Lion A. On the large deformation behaviour of reinforced rubber at different temperatures // J. Mech. Phys. Solids. 1997. V. 45. № 11-12. P. 1805–1834. https://doi.org/10.1016/S0022-5096(97)00028-8
  39. LeMet PD. Hyperbolic Systems of conservation laws and the mathematical theory of shock waves. Philadelphia: SIAM, 1972.
  40. Belytschko T., Liu W.K., Moran B., Elkhodary K. Nonlinear finite elements for continua and structures. 2nd ed. New York: Wiley, 2013.
  41. Dumbser M. Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws // Comput. Methods Appl. Mech. Eng. 2014. V. 280. P. 57–83. https://doi.org/10.1016/j.cma.2014.07.019
  42. Neto M.A., Amaro A., Rosero L., Cime J., Leal R. Finite element method for trusses // In: Engineering Computation of Structures: The Finite Element Method. Berlin/Heidelberg: Springer, 2015. https://doi.org/10.1007/978-3-319-17710-6_3
  43. Jerrams S., Bowen J. Modelling the behaviour of rubber-like materials to obtain components with rigidity modulus tests // WIT Trans. Model. Simul. 1995. V. 12. P. CMEM95061. https://doi.org/10.2495/CMEM950561
  44. Chen J., Garcia E.S., Zimmerman S.C. Intramolecularly cross-linked polymers: From structure to function with applications as artificial antibodies and artificial enzymes // Acc. Chem. Res. 2020. V. 53. № 6. P. 1244–1256. https://doi.org/10.1021/acs.accounts.0c00178
  45. D’Amato M., Gigliotti R., Laguardia R. Seismic isolation for protecting historical buildings: A case study // Front. Built Environ. 2019. V. 5. P. 87. https://doi.org/10.3389/fbuil.2019.00087
  46. Goldstein R.V., Dudenko A.V., Kuznetsov S.V. The modified Cam-Clay (MCC) model: Cyclic kinematic deviatoric loading // Arch. Appl. Mech. 2016. V. 86. P. 2021–2031. https://doi.org/10.1007/s00419-016-1169-x
  47. Carcione J.M., Kosloff D. Representation of matched-layer kernels with viscoelastic mechanical models // Int. J. Numer. Anal. Model. 2013. V. 10. P. 221–232.
  48. Li S., Brun M., Djeran-Maigre I., Kuznetsov S. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Comput. Geotech. 2021. V. 131. P. 103808. https://doi.org/10.1016/j.compgeo.2020.103808
  49. Kuznetsov S. Fundamental and singular solutions of Lamb equations for media with arbitrary elastic anisotropy // Q. Appl. Math. 2005. V. 63. P. 455–467. https://doi.org/10.1090/S0033-569X-05-00969-X
  50. Kuznetsov S. Seismic waves and seismic barriers // Acoust. Phys. 2011. V. 57. P. 420–426. https://doi.org/10.1134/S1063771011030109
  51. Haris A., Alveras P., Mohammadipour M., Mahony M.O. Design and validation of a nonlinear vibration absorber to attenuate torsional oscillations of propulsion systems // Nonlinear Dyn. 2020. V. 100. P. 33–49. https://doi.org/10.1007/s11071-020-05502-z
  52. Safari S., Tannieraj R. Parametric study of stochastic seismic responses of base-isolated liquid storage tanks under near-fault and far-fault ground motions // J. Vib. Control. 2018. V. 24. № 24. P. 5747–5764. https://doi.org/10.1177/1077546316647576
  53. Carranza J.C., Brennan M.J., Tang B. Sources and propagation of nonlinearity in a vibration isolator with geometrically nonlinear damping // J. Vibr. Acoust. 2015. V. 138. № 2. P. 024501. https://doi.org/10.1115/1.4031997
  54. Zhu Y.P., Lang Z.Q. Beneficial effects of antisymmetric nonlinear damping with application to energy harvesting and vibration isolation under general inputs // Nonlinear Dyn. 2022. V. 108. С. 2917–2933. https://doi.org/10.1007/s11071-022-07444-0
  55. Harris C., Piersol A. Harris shock and vibration handbook, 5th ed. New York: McGraw-Hill, 2002.
  56. Kuznetsov S. Subsonic Lamb waves in anisotropic plates // Q. Appl. Math. 2002. V. 60. P. 577–587. https://doi.org/10.1090/qam/1914442
  57. Carboni B., Lacarbonara W. Nonlinear dynamic characterization of a new hysteretic device: Experiments and computations // Nonlinear Dyn. 2016. V. 83. P. 23–39. https://doi.org/10.1007/s11071-015-2305-9
  58. Kuznetsov S. “Forbidden” planes for Rayleigh waves // Q. Appl. Math. 2002. V. 60. P. 87–97. https://doi.org/10.1090/qam/1878260
  59. Tian J.H., Luo Y., Zhao L. Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes // Earth Planet. Phys. 2019. V. 3. № 3. P. 243–252. https://doi.org/10.26464/epp2019024
  60. Ben-Menahem S., Singh S.J. Seismic Waves and Sources. New York: Springer, 2011.
  61. Sutton G.H., Mitronovas W., Pomeroy P.W. Short-period seismic energy radiation patterns from underground nuclear explosions and small-magnitude earthquakes // Bull. Seismol. Soc. Am. 1967. V. 57. P. 249–267. https://doi.org/10.1785/BSSA0570020249
  62. Dudchenko A.V., Dias D. Vertical wave barriers for vibration reduction // Arch. Appl. Mech. 2020. V. 91. P. 257–276. https://doi.org/10.1007/s00419-020-01768-2
  63. Placinta A.-O., Borleanu F., Moldovan I.-A., Coman A. Correlation between seismic waves velocity changes and the occurrence of moderate earthquakes at the bending of the Eastern Carpathians (Vrancea) // Acoustics. 2022. V. 4. № 4. P. 934–947. https://doi.org/10.3390/acoustics4040057
  64. Petrescu L., Borleanu F., Radulian M., Ismail-Zadeh A., Mătenco L. Tectonic regimes and stress patterns in the Vrancea Seismic Zone: Insights into intermediate-depth earthquake nests in locked collisional settings // Tectonophysics. 2021. V. 799. P. 228688. https://doi.org/10.1016/j.tecto.2020.228688
  65. Rankine W.J.M. On the thermodynamic theory of waves of finite longitudinal disturbances // Phil. Trans. R. Soc. Lond. 1870. Т. 160. С. 277–286.
  66. Cui W., Mu X., Chen W., Stephens T.A., Bledsoe B.P. Emergency control scheme for upstream pools of long-distance canals // Irrig. Drain. 2018. V. 68. № 2. P. 218–226. https://doi.org/10.1002/ird.2297
  67. Hunter J.K., Keller J.B. Caustics of nonlinear waves // Wave Motion. 1987. V. 9. № 5. P. 429–443. https://doi.org/10.1016/0165-2125(87)90031-X
  68. Sasoh A., Ohtani T., Mori K. Pressure effect in a shock-wave plasma interaction induced by a focused laser pulse // Phys. Rev. Lett. 2006. V. 97 № 20. P. 205004. https://doi.org/10.1103/PhysRevLett.97.205004
  69. Znamenskaya I.A., Koroteev D.A., Lutskiy A.E. Discontinuity breakdown on shock wave interaction with nanosecond discharge // Phys. Fluids. 2008. V. 20. P. 056101. https://doi.org/10.1063/1.2908010
  70. Kulikovskii A.G. Multi-parameter fronts of strong discontinuities in continuum mechanics // J. Appl. Math. Mech. 2011. V. 75. № 4. P. 378–389. https://doi.org/10.1016/j.jappmathmech.2011.09.002
  71. Zhang S. Shock wave evolution and discontinuity propagation for relativistic superfluid hydrodynamics with spontaneous symmetry breaking // Phys. Lett. B. 2014. V. 729. P. 136–142. https://doi.org/10.1016/j.physletb.2014.01.014
  72. Morduchow M., Libby P.A. On the distribution of entropy through a shock wave // J. Mécanique. 1965. V. 4. P. 191–213.
  73. Zeldovich Y.B., Raizer Y.P. Physics of shock waves and high-temperature hydrodynamic phenomena, 2nd ed. New York: Academic Press, 1967.
  74. Ridah A. Shock waves in water // J. Appl. Phys. 1988. V. 64. P. 152–158. https://doi.org/10.1063/1.341448
  75. Arima T., Taniguchsi S., Ruggeri T., Sugiyama T. Extended thermodynamics of dense gases // Contin. Mech. Thermodyn. 2012. V. 24. P. 271–292. https://doi.org/10.1007/s00161-011-0213-x
  76. Velasco R.M., Garcia-Colin L.S., Uribe F.J. Entropy production: Its role in nonequilibrium thermodynamics // Entropy. 2011. V. 13. № 1. P. 82–116. https://doi.org/10.3390/e13010082
  77. Margolin L.G. Nonequilibrium entropy in a shock // Entropy. 2017. V. 19. № 7. P. 368. https://doi.org/10.3390/e19070368
  78. Hafskjold B., Bedeaux D., Kjelstrup S., Wilhelmsen A. Nonequilibrium thermodynamics of surfaces captures the energy conversions in a shock wave // Chem. Phys. Lett. 2020. V. 738. P. 100054. https://doi.org/10.1016/j.cpletx.2020.100054
  79. Pence T.J., Gou K. On compressible stress of the incompressible neo-Hookean material // Math. Mech. Solids. 2015. V. 20. № 3. P. 157–182. https://doi.org/10.1177/1081286514544258
  80. Maslov V.P., Mosolov P.P. General theory of the solutions of the equations of motion of an elastic medium of different moduli // J. Appl. Math. Mech. 1985. V. 49. № 3. С. 322–336. https://doi.org/10.1016/0021-8928(85)90031-0
  81. Ostrovsky L.A. Wave processes in media with strong acoustic nonlinearity // J. Acoust. Soc. Am. 1991. V. 90. P. 3332–3337. https://doi.org/10.1121/1.401444
  82. Kuznetsov S.V. Love waves in nondestructive diagnostics of layered composites // Survey. Acoust. Phys. 2010. V. 56. P. 877–892. https://doi.org/10.1134/S1063771010060126
  83. Lucchesi M., Pagni A. Longitudinal oscillations of bimodular rods // Int. J. Struct. Stab. Dyn. 2005. V. 5. P. 37–53. https://doi.org/10.1142/S0219455405001490
  84. Gavrilov S.N., Herman G.C. Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading // J. Sound Vib. 2012. V. 331. № 20. P. 444–4480. https://doi.org/10.1016/j.jsv.2012.05.022
  85. Naeeni M.R., Eskandari-Ghadi M., Ardalan A.A., Pak R.Y.S., Rahimian M., Hayati Y. Coupled thermoviscoelastodynamic Green’s functions for bi-material half-space // Z. Angew. Math. Mech. 2015. V. 95. № 3. P. 260–282. https://doi.org/10.1002/zamm.201200135
  86. Li S.J., Brun M., Djeran-Maigre I., Kuznetsov S. Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains // Comput. Geotech. 2019. V. 109. P. 69–81. https://doi.org/10.1016/j.compgeo.2019.01.019
  87. Kuznetsova M., Khudyakov M., Sadovskiy I. Wave propagation in continuous bimodular media // Mech. Adv. Mater. Struct. 2022. V. 29. № 21. P. 3147–3162. https://doi.org/10.1080/15376494.2021.1889725
  88. Truesdell C. General and exact theory of waves in finite elastic strain // Arch. Rat. Mech. Anal. 1961. V. 8. P. 263–296. https://doi.org/10.2514/8.2495
  89. Coleman B.D., Gurtin M.E., Herrera I. Waves in materials with memory, I. The velocity of one-dimensional shock and acceleration waves // Arch. Rat. Mech. Anal. 1965. V. 19. P. 1–19. https://doi.org/10.1007/BF00252275
  90. Truesdell C. On curved shocks in steady plane flow of an ideal fluid // J. Aeronaut. Sci. 1952. V. 19. P. 826–834. https://doi.org/10.2514/8.2495
  91. Boulanger P., Hayes M.A. Finite amplitude waves in Mooney–Rivlin and Hadamard materials // In: Topics in Finite Elasticity. Vienna: Springer, 2001.
  92. Liu C., Cady C.M., Lovato M.L., Orler E.B. Uniaxial tension of thin rubber liner sheets and hyperelastic model investigation // J. Mater. Sci. 2015. V. 50. P. 1401–1411. https://doi.org/10.1007/s10853-014-8700-7
  93. Hill R. Acceleration waves in solids // J. Mech. Phys. Solids. 1962. V. 10. № 1. P. 1–16.
  94. Hashiguchi K. Nonlinear continuum mechanics for finite elasticity-plasticity. New York: Elsevier, 2020.
  95. LeVeque R.J. Numerical Methods for Conservation Laws. Boston: Birkhäuser, 1992.
  96. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed. New York: Cambridge University Press, 2007.
  97. Ilyashenko A.V., Kuznetsov S.V. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media // Russ. J. Nondestr. Test. 2017. V. 5. P. 243–259. https://doi.org/10.1134/S1061830917040039
  98. Truesdell C., Noll W. The non-linear field theories of mechanics, 3rd ed. Berlin/Heidelberg: Springer, 2004.
  99. Kuznetsov S.V. Closed form analytical solution for dispersion of Lamb waves in FG plates // Wave Motion. 2019. V. 84. P. 1–7. https://doi.org/10.1016/j.wavemoti.2018.09.018
  100. Li S., Brun M., Djeran-Maigre I., Kuznetsov S. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // Europ. J. Environ. Civil Eng. 2000. V. 24. № 14. С. 2400–2421. https://doi.org/10.1080/19648189.2018.1506826
  101. Grady D.E. Shock-wave compression of brittle solids // Mechanics of Materials. 1998. V. 29. № 3–4. P. 181–203. https://doi.org/10.1016/S0167-6636(98)00015-5
  102. Lion A. On the large deformation behaviour of reinforced rubber at different temperatures // J. Mech. Phys. Solids. 1997. V. 45. № 11-12. P. 1805–1834. https://doi.org/10.1016/S0022-5096(97)00028-8
  103. LeMet PD. Hyperbolic Systems of conservation laws and the mathematical theory of shock waves. Philadelphia: SIAM, 1972.
  104. Belytschko T., Liu W.K., Moran B., Elkhodary K. Nonlinear finite elements for continua and structures. 2nd ed. New York: Wiley, 2013.
  105. Dumbser M. Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws // Comput. Methods Appl. Mech. Eng. 2014. V. 280. P. 57–83. https://doi.org/10.1016/j.cma.2014.07.019
  106. Neto M.A., Amaro A., Rosero L., Cime J., Leal R. Finite element method for trusses // In: Engineering Computation of Structures: The Finite Element Method. Berlin/Heidelberg: Springer, 2015. https://doi.org/10.1007/978-3-319-17710-6_3
  107. Jerrams S., Bowen J. Modelling the behaviour of rubber-like materials to obtain components with rigidity modulus tests // WIT Trans. Model. Simul. 1995. V. 12. P. CMEM95061. https://doi.org/10.2495/CMEM950561
  108. Chen J., Garcia E.S., Zimmerman S.C. Intramolecularly cross-linked polymers: From structure to function with applications as artificial antibodies and artificial enzymes // Acc. Chem. Res. 2020. V. 53. № 6. P. 1244–1256. https://doi.org/10.1021/acs.accounts.0c00178
  109. D’Amato M., Gigliotti R., Laguardia R. Seismic isolation for protecting historical buildings: A case study // Front. Built Environ. 2019. V. 5. P. 87. https://doi.org/10.3389/fbuil.2019.00087
  110. Goldstein R.V., Dudenko A.V., Kuznetsov S.V. The modified Cam-Clay (MCC) model: Cyclic kinematic deviatoric loading // Arch. Appl. Mech. 2016. V. 86. P. 2021–2031. https://doi.org/10.1007/s00419-016-1169-x
  111. Carcione J.M., Kosloff D. Representation of matched-layer kernels with viscoelastic mechanical models // Int. J. Numer. Anal. Model. 2013. V. 10. P. 221–232.
  112. Li S., Brun M., Djeran-Maigre I., Kuznetsov S. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Comput. Geotech. 2021. V. 131. P. 103808. https://doi.org/10.1016/j.compgeo.2020.103808
  113. Kuznetsov S. Fundamental and singular solutions of Lamb equations for media with arbitrary elastic anisotropy // Q. Appl. Math. 2005. V. 63. P. 455–467. https://doi.org/10.1090/S0033-569X-05-00969-X
  114. Kuznetsov S. Seismic waves and seismic barriers // Acoust. Phys. 2011. V. 57. P. 420–426. https://doi.org/10.1134/S1063771011030109
  115. Haris A., Alveras P., Mohammadipour M., Mahony M.O. Design and validation of a nonlinear vibration absorber to attenuate torsional oscillations of propulsion systems // Nonlinear Dyn. 2020. V. 100. P. 33–49. https://doi.org/10.1007/s11071-020-05502-z
  116. Safari S., Tannieraj R. Parametric study of stochastic seismic responses of base-isolated liquid storage tanks under near-fault and far-fault ground motions // J. Vib. Control. 2018. V. 24. № 24. P. 5747–5764. https://doi.org/10.1177/1077546316647576
  117. Carranza J.C., Brennan M.J., Tang B. Sources and propagation of nonlinearity in a vibration isolator with geometrically nonlinear damping // J. Vibr. Acoust. 2015. V. 138. № 2. P. 024501. https://doi.org/10.1115/1.4031997
  118. Zhu Y.P., Lang Z.Q. Beneficial effects of antisymmetric nonlinear damping with application to energy harvesting and vibration isolation under general inputs // Nonlinear Dyn. 2022. V. 108. С. 2917–2933. https://doi.org/10.1007/s11071-022-07444-0
  119. Harris C., Piersol A. Harris shock and vibration handbook, 5th ed. New York: McGraw-Hill, 2002.
  120. Kuznetsov S. Subsonic Lamb waves in anisotropic plates // Q. Appl. Math. 2002. V. 60. P. 577–587. https://doi.org/10.1090/qam/1914442
  121. Carboni B., Lacarbonara W. Nonlinear dynamic characterization of a new hysteretic device: Experiments and computations // Nonlinear Dyn. 2016. V. 83. P. 23–39. https://doi.org/10.1007/s11071-015-2305-9
  122. Kuznetsov S. «Forbidden» planes for Rayleigh waves // Q. Appl. Math. 2002. V. 60. P. 87–97. https://dx.doi.org/10.1090/qam/1878260
  123. Tian J.H., Luo Y., Zhao L. Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes // Earth Planet. Phys. 2019. V. 3. № 3. P. 243–252. https://doi.org/10.26464/epp2019024
  124. Ben-Menahem S., Singh S.J. Seismic Waves and Sources. New York: Springer, 2011.
  125. Sutton G.H., Mitronovas W., Pomeroy P.W. Short-period seismic energy radiation patterns from underground nuclear explosions and small-magnitude earthquakes // Bull. Seismol. Soc. Am. 1967. V. 57. P. 249–267. https://doi.org/10.1785/BSSA0570020249
  126. Dudchenko A.V., Dias D. Vertical wave barriers for vibration reduction // Arch. Appl. Mech. 2020. V. 91. P. 257–276. https://doi.org/10.1007/s00419-020-01768-2
  127. Placinta A.-O., Borleanu F., Moldovan I.-A., Coman A. Correlation between seismic waves velocity changes and the occurrence of moderate earthquakes at the bending of the Eastern Carpathians (Vrancea) // Acoustics. 2022. V. 4. № 4. P. 934–947. https://doi.org/10.3390/acoustics4040057
  128. Petrescu L., Borleanu F., Radulian M., Ismail-Zadeh A., Mătenco L. Tectonic regimes and stress patterns in the Vrancea Seismic Zone: Insights into intermediate-depth earthquake nests in locked collisional settings // Tectonophysics. 2021. V. 799. P. 228688. https://doi.org/10.1016/j.tecto.2020.228688

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025