THE METHOD OF FICTITIOUS EXTREMA LOCALIZATION IN THE PROBLEM OF GLOBAL OPTIMIZATION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of finding the global extremum of a non-negative function on a positive parallelepiped in n-dimensional Euclidean space is considered. A method of fictitious extrema localization in a bounded area near the origin is proposed, which allows to separate the global extremum point from fictitious extrema by discarding it at a significant distance from the localization set of fictitious minima. At the same time, due to the choice of the starting point in the gradient descent method, it is possible to justify the convergence of the iterative sequence to the global extremum of the minimized function.

About the authors

Yu. G. Evtushenko

Federal Research Center “Informatics and Control” of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: yuri-evtushenko@yandex.ru
Russian Federation, Moscow; Russian Federation, Dolgoprudny, Moscow olast

A. A. Tret’yakov

Federal Research Center “Informatics and Control” of the Russian Academy of Sciences; Siedlce University, Faculty of Sciences

Author for correspondence.
Email: prof.tretyakov@gmail.com
Russian Federation, Moscow; Poland, Siedlce

References

  1. Евтушенко Ю.Г. Методы решения экстремальных задач и их применение в системах оптимизации. М.: Наука, 1982.
  2. Карманов В.Г. Математическое программирование. М.: Наука, 1986.
  3. Grishagin V., Israfilov R., Sergeyev Y. Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes // Applied Mathematics and Computation. 2018. V. 318. P. 270–280.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Ю.Г. Евтушенко, А.А. Третьяков