THE METHOD OF FICTITIOUS EXTREMA LOCALIZATION IN THE PROBLEM OF GLOBAL OPTIMIZATION

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of finding the global extremum of a non-negative function on a positive parallelepiped in n-dimensional Euclidean space is considered. A method of fictitious extrema localization in a bounded area near the origin is proposed, which allows to separate the global extremum point from fictitious extrema by discarding it at a significant distance from the localization set of fictitious minima. At the same time, due to the choice of the starting point in the gradient descent method, it is possible to justify the convergence of the iterative sequence to the global extremum of the minimized function.

作者简介

Yu. Evtushenko

Federal Research Center “Informatics and Control” of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

编辑信件的主要联系方式.
Email: yuri-evtushenko@yandex.ru
Russian Federation, Moscow; Russian Federation, Dolgoprudny, Moscow olast

A. Tret’yakov

Federal Research Center “Informatics and Control” of the Russian Academy of Sciences; Siedlce University, Faculty of Sciences

编辑信件的主要联系方式.
Email: prof.tretyakov@gmail.com
Russian Federation, Moscow; Poland, Siedlce

参考

  1. Евтушенко Ю.Г. Методы решения экстремальных задач и их применение в системах оптимизации. М.: Наука, 1982.
  2. Карманов В.Г. Математическое программирование. М.: Наука, 1986.
  3. Grishagin V., Israfilov R., Sergeyev Y. Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes // Applied Mathematics and Computation. 2018. V. 318. P. 270–280.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Ю.Г. Евтушенко, А.А. Третьяков, 2023