On a paradoxical property of the shifting mapping on an infinite-dimensional tori

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An infinite-dimensional torus T=lp/2π, where lp, p ≥ 1 – space of sequences,  – natural integer lattice in lp, is considered. We study the classical question in the theory of dynamical systems about the behavior of trajectories of a shift mapping on the specified torus. More precisely, some sufficient conditions are proposed that guarantee the emptiness of the ω-limit and α-limit sets of any of the shift mapping onto T.

Full Text

Restricted Access

About the authors

S. D. Glyzin

Center of Integrable Systems, P.G. Demidov Yaroslavl State University

Author for correspondence.
Email: glyzin.s@gmail.com
Russian Federation, Yaroslavl

A. Yu. Kolesov

Center of Integrable Systems, P.G. Demidov Yaroslavl State University

Email: andkolesov@mail.ru
Russian Federation, Yaroslavl

References

  1. Каток А.Б., Хасселблат Б. Введение в современную теорию динамических систем. М.: Факториал, 1999.
  2. Каток А.Б., Хасселблат Б. Введение в теорию динамических систем с обзором последних достижений. М.: МЦНМО, 2005.
  3. Мищенко Е.Ф., Садовничий В.А., Колесов А.Ю., Розов Н.Х. Многоликий хаос. М.: Физматлит, 2012.
  4. Jessen B. // Acta Math. 1934. V. 63. P. 249–323.
  5. Kozlov V.V. // Russian Journal of Mathematical Physics. 2021. V. 28. № 1. P. 73–83.
  6. Глызин С.Д., Колесов А.Ю. // УМН. 2022. Т. 77. Вып. 3 (465). С. 3–72.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences