Application of machine learning methods and medical image processing in solving the problem of detecting stenoses of the middle cerebral artery according to computed tomographic angiography data

Мұқаба


Дәйексөз келтіру

Толық мәтін

Аннотация

BACKGROUND: Ischemic stroke is a significant contributor to mortality rates in Russia and globally [1]. Computed tomographic angiography is a primary diagnostic tool for ischemic stroke, enabling the identification of stenosis or occlusion in cerebral arteries. The majority of ischemic strokes (51%) occur in the middle cerebral artery region [2], underscoring the growing interest in evaluating blood flow in this area of the brain. The manual detection of stenoses is characterised by subjective evaluation and requires a considerable amount of time. The automation of middle cerebral artery narrowing detection represents a significant challenge in computed tomographic angiography image analysis.

AIM: The study aims to develop an algorithm for the automatic detection of stenoses in the middle cerebral artery on DICOM images of computed tomographic angiography based on the application of artificial neural networks, vascularity assessment and skeletonization algorithms.

MATERIALS AND METHODS: A total of 262 computed tomographic angiography series from patients at the N.V. Sklifosovsky Emergency Medical Research Institute were analyzed. Of these, 94 series exhibited stenosis in the M1/M2 segment of the middle cerebral artery. The image processing was conducted using an artificial neural network with a CFPNet-M architecture [3]. The reconstruction of the vascular tree was based on the calculation of the "vesselness" measure [4] with subsequent skeletonization of the identified structures.

RESULTS: In the initial stage, a neural network for the segmentation of the middle cerebral artery basin was trained. The training array was generated using the MNI152 template with affine transformations and subsequent expert evaluation. In this case, the IoU (Intersection over Union) measure was 0.81. The primary objective was the segmentation of the middle cerebral artery vascular tree, which was achieved through the use of the vesselness filter, followed by an evaluation of voxel intensities and the identification of the connected object with the longest length. The next stage involved the construction of the skeleton of the middle cerebral artery. This entailed determining the centerline of the vessel and representing the resulting skeleton as a graph with the vessels as edges and their bifurcation points as vertices. The subsequent stage was the calculation of morphological features (diameter, area, and perimeter) in the cross-sectional plane for each segment (the area between the bifurcation points). Finally, the area of constriction was determined based on the analysis of the behavior of the segment cross-sections and the identification of any deviation from the threshold value. The overall accuracy of the algorithm was 79.39% (95% confidence interval 73.98–84.12), with a sensitivity of 80.85% (95% confidence interval 71.44–88.24) and a specificity of 78.57% (95% confidence interval 71.59–84.52).

CONCLUSIONS: Thus, we developed an algorithm for the detection of stenoses in the M1/M2 segment based on the segmentation of the middle cerebral artery basin, the assessment of vesselness, and the skeletonization of the vascular tree. The application of the developed algorithm in practice, after its validation and clinical approval, will simplify the routine evaluation of computed tomographic angiography images by radiologists and provide an opportunity to obtain an objective assessment of the stenosis area.

Толық мәтін

BACKGROUND: Ischemic stroke is a significant contributor to mortality rates in Russia and globally [1]. Computed tomographic angiography is a primary diagnostic tool for ischemic stroke, enabling the identification of stenosis or occlusion in cerebral arteries. The majority of ischemic strokes (51%) occur in the middle cerebral artery region [2], underscoring the growing interest in evaluating blood flow in this area of the brain. The manual detection of stenoses is characterised by subjective evaluation and requires a considerable amount of time. The automation of middle cerebral artery narrowing detection represents a significant challenge in computed tomographic angiography image analysis.

AIM: The study aims to develop an algorithm for the automatic detection of stenoses in the middle cerebral artery on DICOM images of computed tomographic angiography based on the application of artificial neural networks, vascularity assessment and skeletonization algorithms.

MATERIALS AND METHODS: A total of 262 computed tomographic angiography series from patients at the N.V. Sklifosovsky Emergency Medical Research Institute were analyzed. Of these, 94 series exhibited stenosis in the M1/M2 segment of the middle cerebral artery. The image processing was conducted using an artificial neural network with a CFPNet-M architecture [3]. The reconstruction of the vascular tree was based on the calculation of the "vesselness" measure [4] with subsequent skeletonization of the identified structures.

RESULTS: In the initial stage, a neural network for the segmentation of the middle cerebral artery basin was trained. The training array was generated using the MNI152 template with affine transformations and subsequent expert evaluation. In this case, the IoU (Intersection over Union) measure was 0.81. The primary objective was the segmentation of the middle cerebral artery vascular tree, which was achieved through the use of the vesselness filter, followed by an evaluation of voxel intensities and the identification of the connected object with the longest length. The next stage involved the construction of the skeleton of the middle cerebral artery. This entailed determining the centerline of the vessel and representing the resulting skeleton as a graph with the vessels as edges and their bifurcation points as vertices. The subsequent stage was the calculation of morphological features (diameter, area, and perimeter) in the cross-sectional plane for each segment (the area between the bifurcation points). Finally, the area of constriction was determined based on the analysis of the behavior of the segment cross-sections and the identification of any deviation from the threshold value. The overall accuracy of the algorithm was 79.39% (95% confidence interval 73.98–84.12), with a sensitivity of 80.85% (95% confidence interval 71.44–88.24) and a specificity of 78.57% (95% confidence interval 71.59–84.52).

CONCLUSIONS: Thus, we developed an algorithm for the detection of stenoses in the M1/M2 segment based on the segmentation of the middle cerebral artery basin, the assessment of vesselness, and the skeletonization of the vascular tree. The application of the developed algorithm in practice, after its validation and clinical approval, will simplify the routine evaluation of computed tomographic angiography images by radiologists and provide an opportunity to obtain an objective assessment of the stenosis area.

×

Авторлар туралы

Maksim Solominov

Gammamed-Soft LLC

Хат алмасуға жауапты Автор.
Email: msolominov@yandex.ru
ORCID iD: 0009-0007-6590-8748
Ресей, Moscow

Denis Pakhomov

Gammamed-Soft LLC

Email: pakhomovdv0@gmail.com
ORCID iD: 0009-0009-0122-8887
Ресей, Moscow

Tatiana Zagriazkina

Gammamed-Soft LLC

Email: zagrtatyana@gmail.com
ORCID iD: 0009-0003-7620-0535
SPIN-код: 8840-2625
Ресей, Moscow

Әдебиет тізімі

  1. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet Neurology. 2021;20(10):795–820. doi: 10.1016/S1474-4422(21)00252-0
  2. Ng YS, Stein J, Ning M, Black-Schaffer RM. Comparison of clinical characteristics and functional outcomes of ischemic stroke in different vascular territories. Stroke. 2007;38(8):2309–2314. doi: 10.1161/STROKEAHA.106.475483
  3. Lou A, Guan S, Loew M. CFPNet-M: A light-weight encoder-decoder based network for multimodal biomedical image real-time segmentation. Comput Biol Med. 2023;154:106579. doi: 10.1016/j.compbiomed.2023.106579
  4. Jerman T, Pernus F, Likar B, Spiclin Z. Enhancement of Vascular Structures in 3D and 2D Angiographic Images. IEEE Trans Med Imaging. 2016;35(9):2107–2118. doi: 10.1109/TMI.2016.2550102

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Eco-Vector, 2024

Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 79539 от 09 ноября 2020 г.


Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>